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Iterated Attitudes 

TIMOTHY WILLIAMSON 

THE AIM OF THIS PAPER is not to advance a thesis but to explore a 
phenomenon. The phenomenon is an easily overlooked kind of inten- 
sionality, whose neglect causes philosophical problems. It can be put 
like this: sometimes the set of principles satisfied by one sentential 
operator differs from, and may even be inconsistent with, the set of 
principles satisfied by another sentential operator coextensive with the 
first. These notions will be formally defined. The phenomenon arises 
when an operator is iterated, in the loose sense of being applied to a 
sentence in which it itself occurs. Examples will be analysed in detail. 
Several involve operators by which propositional attitudes are attribu- 
ted to subjects; one involves metaphysical modality. An application will 
be made to some arguments against mechanistic views of mind. The 
phenomenon also raises a number of technical questions in bimodal 
logic, some of which will be answered. 

1. Five examples 

Example 1. According to what is sometimes known as the KK prin- 
ciple, if one knows something, then one knows that one knows it (in the 
propositional sense of ‘know’). The principle is open to several cogent 
objections (for one objection see Williamson 1992). Even so, qualified 
versions of it may hold when appropriate restrictions or idealizations 
are introduced. In such cases, the question arises: under what modes of 
presentation of oneself to oneself does the qualified KK principle hold? 
Let us use the phrase ‘singular term’ broadly, to cover definite descrip- 
tions as well as names, demonstratives and pronouns such as ‘I’, without 
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prejudice to the question whether definite descriptions are to be ana- 
lysed as quantifiers. For any singular term t, ‘t knows that . . .’ is 
therefore a singulary sentence operator (interpret quotation marks as 
corner quotes where appropriate). Let us say, relative to a fixed context, 
that the term t fits the KK principle just in case this holds 

(KK,) For all P, if t knows that P, then t knows that t knows 
that P. 

Suppose (what is not the case) that in the context of its use by me, ‘I’ 
fits the KK principle. Suppose also that, although I am in fact the man 
with a hole in his pocket, I do not know that I am the man with a hole in 
his pocket. In this context, does the definite description ‘the man with a 
hole in his pocket’ fit the KK principle? Suppose that the man with a hole 
in his pocket knows that it is sunny. Does it follow that the man with 
a hole in his pocket knows that the man with a hole in his pocket 
knows that it is sunny? It certainly follows that I know that it is sunny 
(‘. . . knows that P’ is an extensional context for ‘. . .’). Since KK, 
holds for t = ‘I’ in this context, it follows that I know that I know that it 
is sunny. Thus the man with a hole in his pocket knows that I know that 
it is sunny. But it does not follow that the man with a hole in his pocket 
knows that the man with a hole in his pocket knows that it is sunny, or 
that I know that the man with a hole in his pocket knows that it is sunny. 
For all I know, the man with a hole in his pocket is asleep and has no 
idea what the weather is like (‘t knows that . . . knows that P’ is an 
intensional context for ‘. . .’). Thus ‘the man with a hole in his pocket’ 
does not fit the KK principle in this context, even though in this context 
the definite description picks out the same individual as ‘I’ does, and ‘I’ 
fits the KK principle in this context. 

Even if an individual satisfies the KK principle in the intuitively 
intended sense, it does not follow that KK, holds whenever the term l 
picks out that individual. Nor does KK, specify any property of the 
individual picked out by t. To do that, one would also need to specify 
how the knower is to be specified in the content of the knowledge, in a 
way that depends only on who the knower is. For example, one might 
stipulate that an individual x satisfies the KK principle just in case KK, 
holds for t = ‘I’ in a context in which x is the speaker. This comes close 
to the intuitively intended sense of the principle. Sophisticated defen- 
ders of the KK principle entered just such qualifications, which its 
Cartesian spirit seems to demand (see Hintikka 1962, pp. 158-9, and 
Castaiieda 1970). Failures of KK, are not failures of the KK principle 
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when t does not contribute what ‘I’ would have contributed to the 
proposition expressed. For present purposes what matters is that 
although the two sentence operators ‘I know that . . .’ and ‘The man 
with a hole in his trousers knows that. . .’ are coextensive in the present 
context, in the sense that one yields a truth when applied to a given 
sentence if and only if the other does, they do not satisfy the same 
principles: one iterates in the manner of KK, but the other does not. 

Example 2. Switch from the subject of the propositional attitude to the 
attitude itself. On a cartoon version of the Stoic idea of wisdom, x is 
wise if and only if x believes only what x knows, i.e. 

I 

(B/K,) For all P, if x believes that P, x knows that P. 

&en the simplifying assumption that knowledge entails belief, the 
converse of B/K, holds automatically. Now suppose that Socrates is 
wise. To ensure that the case is genuinely different from Example 1, 
assume that Socrates knows perfectly well that he is Socrates. The 
operators ‘Socrates knows that . . .’ and ‘Socrates believes that . . .’ 
are coextensive, but they need not satisfy the same principles. For 
example, Socrates knows that if Socrates knows that there is a form 
of mud then there is a form of mud, simply because Socrates knows that 
knowledge is factive, and applies that knowledge to the present case. It 
does not follow that Socrates believes that if Socrates believes that there 
is a form of mud then there is a form of mud. For although Socrates is 
wise, he may not believe that he is wise. More generally, the correctness 
of the schema O[Op =I p ]  for the operator ‘Socrates knows that’ in 
place of 0 does not imply its correctness for ‘Socrates believes that’ 
in place of 0, even granted the coextensiveness of the two operators. 

Matters are slightly more complicated than has yet been indicated. 
For suppose that Socrates always knows by introspection whether he 
believes something; suppose also that he believes all the logical con- 
sequences of his beliefs. Then if he does not believe that €’, he believes 
that Socrates does not believe that P. Since ‘Socrates does not believe 
that P’ entails ‘If Socrates believes that P then P’ (on a truth-functional 
reading of the conditional), Socrates believes that if Socrates believes 
that P then P. The same conclusion follows from the assumption that 
Socrates does believe that P, for P entails ‘If Socrates believes that P 
then P’. Thus if the schema O[Op 2 p] fails for ‘Socrates believes that’ 
in place of 0, Socrates fails either to know whether he believes some- 
thing or to believe the logical consequences of what he believes; both 
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kinds of failure are consistent with wisdom as defined above. In parti- 
cular, the technique of possible worlds semantics can be used to provide 
a model in which Socrates is wise, and knows that if he knows that P 
then P, but believes neither that P nor that if he believes that P then P. 

For the proof of this, consider a possible worlds model based on a 
set of three worlds {a,b,c}. Interpret K (‘Socrates knows that’) and B 
(‘Socrates believes that’) like necessity Operators whose accessibility 
relations are RK and RB respectively, where WRKX for all worlds w and 
x,  and WRBX if and only if either w = a or x = c.  Since a has both RK 
and RB to all worlds, K a  = B a  is true at a for any formula a. However, 
if p is true at c but not at b, then Bp 2 p is false at b, so B(Bp 3 p) is 
false at a (as is -Bp 3 B-Bp). Since RK is an equivalence relation, K 
satisfies all the principles of the modal system S5. Since RB is serial, 
connected and transitive, B satisfies all the principles of KDG14. See 
Hughes and Cresswell 1984 for the relevant background in modal logic. 

Example 3 involves metamathematical provability operators, and their 
relevance to John Lucas’s celebrated attempt to enlist Godel’s work to 
disprove mechanism. Put racily, Godel’s second incompleteness theo- 
rem says that Peano Arithmetic (PA)--or any recursively axiomatizable 
system extending it-can prove its own consistency only at the price of 
inconsistency. A little more formally: if it is provable in PA that it is not 
provable in PA that 0 = 1 then it is provable in PA that 0 = 1. But this 
formulation still has one occurrence of the informal sentence operator 
‘It is provable in PA that’ inside the scope of another; it therefore treats 
the operator as coding something in the first-order language of PA, 
whose intended interpretation concerns numbers, not proofs. Gijdel 
codes each formula a of LpA, the language of PA, by a numeral ‘a’ 
of LpA, and provability in PA by a formula Bew(x) of LpA with just one 
free variable. Thus the informal sentence operator is formalized by 
Bew(‘. . .’) in LpA. The second incompleteness theorem says that 
FpA - Bew(‘0 = 1’) only if FpA 0 = 1. 

Gijdel could have used a different coding. What features of his 
coding justify the informal reading of Bew(‘. . .’) as ‘It is provable 
in PA that’? If LPA had no intended interpretation, the informal reading 
would be hard to justify. But L ~ A  does have an intended interpretation, 
on which a sentence is true if and only if it is true in all standard models 
of PA. Since PA has standard models, and they are all isomorphic, 
exactly one of a and -a is true (given a classical metalogic). Since we 
have the notion of truth for LPA, we can stipulate that a one-place 
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sentential operator 0 in LPA is a provability operatorfor PA just in case 
for each sentence a of LPA, Oa is true if and only if FpA a. Bew('. . . ') 
is a provability operator for PA in this sense (if we count it an operator). 

Any two provability operators O1 and O2 for PA are coextensive: 
O l a  = 02a is true for each sentence a of LpA, But it does not follow 
that the biconditionals are provable in PA. The unprovability in PA of 
-Bew('O = 1') does not imply the unprovability in PA of -O(O = 1) 
for every provability operator 0 for PA. For example, we can define an 
operator 0' in LpA thus: 

Ooa =df Bew('a') & -Bew('-a') 

Since PA is in fact consistent, the second conjunct of Ooa is true 
whenever the first is, so Ooa is true if and only if Bew('a') is true. 
Thus 0' is a provability operator for PA. Yet FPA - Oo(O = l), for it is 
easily checked that kPA Bew('- 0 = 1'). Thus, if I is the negation of 
a theorem of PA, the result of replacing 0 . . . throughout the principle 
0-01 by 0' . . . is true, but the result of replacing it by Bew('. . .') is 
false. Coextensive provability operators satisfy different principles in 
PA. 

One might hope to exclude unwanted provability operators by 
analysing 'It is provable that' as the existential generalization of ' x  
is a proof that'. Since the latter notion is effectively decidable, it can 
be subjected to tighter controls. More specifically, say that Pf[. . .](x) 
is a proof operator for PA just in case there is an effective procedure 
for assigning to each closed formula a of LpA a formula Pf[a](x) of 
LpA with just one free variable and coding each proof in an axioma- 
tization of PA by a natural number such that for each natural number 
n, if n codes a proof of a then FPA Pf[a](n) (where n is the L ~ A  
numeral for n) and otherwise FPA -Pf[a](n). The operator of which 
Bew('. . .') is the existential generalization is a proof operator in this 
sense. The definition ensures that the existential generalization of a 
proof operator is a provability operator. For let Pf[. . .](x) be a proof 
operator. If (3) Pf[a](x) is true then Pf[a](n) is true for some n, so 
not F p ~  -Pf[a](n) (since everything provable in PA is true), so n 
codes a proof of a (by definition of a proof operator), so FPA a. 
Conversely, if FPA a, then some number n codes a proof of a, so 
kPA Pf[a](n) (by definition of a proof operator), so Pf [a](n) is true, so 
(3) Pf[a](x) is true. 

It turns out that not even the existential generalization of a proof 
operator need satisfy the same principles as Bew('. . .'). Example: let 
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Bew('. . .') = (3) B('. . . ' ,x). B('. . . l , x )  is a proof operator. Define 
a new operator Pf +[. . . ] (x )  thus 

Pf'[a] ( X )  =df B('a',X) &a 
Pf+[. . . ] (x )  is a proof operator, for if n codes a proof of a in PA 
then t p A  a and FPA B('a',n) (since E!('. . .'J) is a proof operator), so 
FPA B('a',n) & a; while if n does not code a proof of a in PA then 
FPA -B('a',n), so FPA -(B ('a',n) & a). Now define a new provabil- 
ity operator O+ as the existential generalization of Pf+[. . . ] (x ) .  Thus 
where x is not free in a 

O+a =df (3X) (B ( ' a l , X )  & a) 

Since x is not free in a, O+a is provably equivalent in PA to 
Bew('a') & a). Trivially, kPA -(Bew('O = 1') & 0 = I), i.e. t p A  

-O+(O = 1). Thus the second incompleteness theorem does not apply 
to O+, even though O+ is the existential generalization of a proof 
operator. Like Oo, O+ satisfies the principle 0-01, which is not 
satisfied by the coextensive operator Bew('. . .'). 

The existence of deviant metamathematical codings was recognized 
early on. Kreisel (1953) showed that a problem of Henkin's could be 
resolved either way by alternative codings. Takeuti (1955) gave a 
Gentzen-style cut-free formulation of arithmetic in which the natural 
coding of the unprovability of 0 = 1 is provable. Feferman (1960) 
discussed the problem of alternative presentations of formal systems 
in detail, and demonstrated the provability in PA of a deviant coding of 
consistency for the usual formulation of PA. Kreisel (1965, pp. 153- 
154) advocated the use of a notion of the canonical presentation of a 
formal system, a programme developed by Feferman (1982). If one can 
isolate the features of a coding relevant to the derivation of the second 
incompleteness theorem for PA, that analysis will carry with it a gem 
eralization of the theorem to other systems (the latter is the aspect of the 
problem with which Godel was concerned in the footnote he added to 
the translation of Godel 1932 in van Heijenoort 1967, discussed in 
Feferman 1990). 

The usual contemporary response appeals to the Hilbert-Bernays- 
Lob derivability conditions, first isolated by Lob (1955; see e.g. Boolos 
1993, p. 16). These are conditions on apredicate (as contrasted with an 
operator) F in the language L of a theory S ,  given a quotation functor 
'. . .' in L from sentences to singular terms. They state that for all 
sentences a and p of L: , 
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(1) If t-s a then FS F(‘al) 
(2) 
(3) Es  (F(‘a’) 2 F(‘F(‘al)’) 

Fs F(‘a 3 bl) 3 (F(‘a’) 3 F(‘F)) 

If S satisfies (1)-(3) and a specifiable modicum of arithmetic can be 
embedded in S, then t-s - F ( r ~ ’ )  only if ES 1. This account lacks 
generality in at least one respect, because it does not make explicit 
the relevant features of the quotation functor ‘. . .’. What is really 
required is just that L should contain a function symbol # such that 
for all formulas a, p and y of L: 

(4) If the result of substituting ‘ p’ for all free variables in a is 
y then Fs ‘a’ # ‘p’ = ‘yl 

No more arithmetic is needed in S. The required background logic is 
simply: 

(5) If a is a truth-functional tautology then Is a 
(6) If Fs a 3) f3 and t-, a then FS f3 
(7) t-s s = t 3) (a@) = a@)) 

In (7), s and t are singular terms and the formula a(t) differs from a(s) 
only in having t somewhere where the latter has s. If S satisfies (1)-(7), 
then t-s -F(‘L’) only if FS 1. 

The crucial point is that (4)-(7) permit one to derive Godel’s 
diagonal lemma for S, that for every one-place predicate F(. . .) in L, 
there is a closed formula a of L such that Fs a = F(‘a’). For the result 
of substituting the term ‘F(x # x)’ for the free variable in F(x#x) is 
F(‘F(x # x)’ # ‘F(x # x)l). Thus by (4) 

t-s ‘F(x # x)’ # ‘F(x # x)’ = ‘F(‘F(x # x)’ # ‘F(x # x)’)’. 

(7) then gives the required biconditional: 

t-s F(‘F(x # x)l # ‘F(x # x)’) E F(‘F(‘F(x # x)’ # ‘F(x # x)’)’). 

From the diagonal lemma and (1)-(3) (and, of course, (5)-(6)) one can 
prove Lob’s theorem, that t-, F(‘a’) 3 a only if Fs a (for a clear 
presentation see Boolos 1993, pp. 56-57). The second incompleteness 
theorem is just the special case of Lob’s theorem where a = 1. 

What (1)-(7) do not provide are general sufficient conditions on an 
arbitrary sentential operator 0 for the derivability of the second incom- 
pleteness theorem. It would be naive simply to replace the operator 
F(‘. . .’) by 0 . . . in (1)-(3), giving: 
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(1’) If a then Fs Oa 
(2’) t, O(a 3 p) 3 (Oa 3 Ob) 
(3‘) t, Oa 3 OOa 

The claim is false that whenever S satisfies (1’)-(3’) and (4)-(7), 
FS -01 only if tS 1. For if 0 is a redundant operator, so that Oa is 
provably equivalent to a, then (5)-(6) imply both (1’)-(3’) and the 
condition that -01; thus the claim implies that S satisfies (4)-(7) 
only if S is inconsistent, to which PA is an obvious counterexample. 
The attempt to prove the claim breaks down at the application of the 
diagonal lemma. Although the lemma itself is still derivable, it does not 
provide the required formula a such that ks a = -0a (corresponding to 
the a such that I-s a = -F(‘a’) in the proof of the incompleteness 
theorem), and when 0 is redundant such an a exists only if S is 
inconsistent. The redundant operator cannot be factorized into any 
predicate T and the quotation functor ‘. . .’ in PA, for otherwise 
a = T(‘al) would be true for each formula a in LpA, contrary to 
Tarski’s theorem on the undefinability of truth in LpA. 

Even when 0 . . . is coextensive with Bew(‘. . .’), (1’)-(3’) are not 
sufficient for 0 . . . to satisfy the second incompleteness theorem when 
S = PA (which satisfies (4)-(7)). The operator O+ defined above is a 
counterexample. That it satisfies (1’)-(3’) is an easy corollary of the 
fact that Bew(‘. . .’) does. Thus O+a is not equivalent in PA to the 
application of a predicate to ‘ al. The source of the trouble is obviouslly 
the second conjunct of O+a, namely a. In contrast, Ooa is equivalent in 
PA to the application of a predicate to ‘a’, but 0’ does not satisfy (1’). 

A systematic account of the principles satisfied by the various 
provability operators can be given within the framework of proposi- 
tional modal logic (see Boolos 1993 for the relevant background and 
results on the modal logic of provability). Its language La has infinitely 
many propositional variables po, pl, p2,  . . ., with material implication 
2, a falsity constant I and the box as the only primitive operators; p 
and q will be used as metalinguistic variables ranging over distinct 
propositional variables of the object-language. For simplicity, assume 
that 3 and I are also in LpA. Given a sentential operator 0 in LPA, 
define an 0-translation to be any mapping * of formulas of L, to closed 
formulas of LpA such that for all formulas a and p of Lo, *I = I, 
*(a 3 p) = *a 3 *p and *oa = O*a. Intuitively, * replaces by 0 and 
propositional variables by sentences of LpA in a uniform way. For any 
formula a of Lo, say that 0 satisJies a just in case *a is true (in a 
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standard model of PA) for each 0-translation *. In effect, the proposi- 
tional variables of L, are universally quantified over all closed formulas 
of Lp*. 

It is convenient to begin by considering provable satisfaction, where 
0 provably satisfies a just in case *a is provable in PA for each 0- 
translation *. By (1)-(3) for Bew and Lob’s theorem, Bew(‘. . .’) 
provably satisfies all theorems of the system GL (= KW) of provability 
logic (‘G’ for Godel, ‘L’ for Lob); likewise for any system satisfying 
(1)-(7) in place of PA. To axiomatize GL, take all truth-functional 
tautologies and all formulas of the forms o(a I> p) IJ (oa 3 up) and 
O ( O ~  IJ a) IJ ~a (Lob’s axiom) as the axioms and modus ponens (MP) 
and necessitation (i.e. the rule that if a is a theorem then so is oa) as the 
rules of inference. Solovay (1976) proved the converse for PA: if 
Bew(‘. . .’) provably satisfies a, then l - ~ ~  a. 

Now axiomatize an extension GLS of GL (‘S’ for Solovay) by 
taking all theorems of GL and all formulas of the form oa I> a as 
the axioms and MP as the only rule of inference (since GL is decidable, 
the axiomatization of GLS is recursive). Since everything provable in 
PA is true, Bew(‘. . .’) satisfies every theorem of GLS. GLS is not 
closed under necessitation, for -0 I is a theorem but 0-0 I is not (its 
negation is); although --Bew(‘i’) is true, it is not provable in PA. 
Again, Solovay (1976) proved the converse result: if Bew(‘. . .’) 
satisfies a, then k~~~ a. Thus the theorems of GLS are exactly the 
principles that Bew(‘. . .’) satisfies. 

As for the deviant provability operator O+, the principles that it 
satisfies constitute the modal logic Grz (= S4Grz = KGrz, named 
after Andrzej Grzegorczyk), which can be axiomatized by taking 
all truth-functional tautologies and all formulas of the forms 
o(a IJ p) 3 (oa IJ ob) and o(o(a 3 oa) IJ a) IJ a (Grzegorczyk’s 
axiom) as the axioms and MP and necessitation as the rules of inference 
(see Boolos 1993, pp. 155-164, for the relevant results about Grz). 
Every formula of the form U a  I> a is derivable in Grz, and is subject 
to necessitation. In particular, (01 2 I) is derivable. Thus 0-OL 
is a theorem of Grz but not of GLS, while -0-01 is a theorem of GLS 
but not of Grz. O+ . . . but not Bew(‘. . .’) satisfies 0-01; 
Bew(‘. . .’) but not O+ . . . satisfies -0-01. 

The phenomenon is observable within GLS itself. Let ma abbreviate 
Oa & a. Then ma E oa is a theorem of GLS for each formula a of 
L. Nevertheless, .-.I but not 0-01 is a theorem of GLS, as is 
-0-01 but not -.-.I. Unless a is a theorem of GLS (indeed, of 
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GL), o(ma E H a )  is not a theorem of GLS, so and are not 
interchangeable within modal contexts in GLS. 

Such possibilities cast doubt on attempts to use Godel’s incomplete- 
ness theorems to show that humans are not Turing machines (see Lucas 
1961 and Penrose 1989, 1994). One argument runs something like this: 
if I am a Turing machine, then the set of mathematical and metamathe- 
matical sentences to which I eventually assent (given enough time and 
paper) is recursively enumerable, and therefore (it can be shown) 
recursively axiomatizable; since I assent to a modicum of logic and 
arithmetic, the second incompleteness theorem applies; but I assent to 
my own consistency, so it would follow that I am inconsistent, which I 
am not; therefore I am not a Turing machine. The argument is obviously 
very loose as it stands. The supposition that I am a Turing machine is 
quite unclear until my relevant states have been specified; the inference 
to the recursive enumerability of the set of sentences to which I even- 
tually assent is also dubious until the notion of assent (is it revocable?) 
and the role of perceptual input have been clarified (a Turing machine 
that does not halt can write an infinite sequence of symbols that is not 
recursively enumerable on its tape, if such a sequence is provided for it 
to read). For the sake of argument, however, grant that these loose ends 
have been tidied up, and that a sense has been given to ‘I am a Turing 
machine’ from which it does follow that the set of sentences to which I 
eventually assent is recursively enumerable. Call the set ‘my system’. It 
can be recursively axiomatized; note that there is no automatic guar- 
antee that everything provable in my system is true. A standard objec- 
tion is then that no good reason has been provided to believe that my 
system is consistent (see Putnam 1975, p. 366). This objection is 
unsatisfying, however, for the argument from the incompleteness 
theorem seems to show that I must be inconsistent if I eventually assent 
to my own consistency; yet it seems that even if I do so I might still be 
consistent. 

A more significant fallacy in the argument is its neglect of the mode 
of presentation under which I assent to the consistency of my system. 
The Godelian consistency sentence makes coded reference to my sys- 
tem by descriptive means: it codes a description of the axioms and 
inference rules of an axiomatized system that is in fact my own. ,The 
consistency sentence to which it seems that I can consistently assent 
makes reference to my system by indexical means, as my system. There 
is a corresponding difference between the descriptive provability opera- 
tor ‘A Turing machine with machine table T can prove that . . .’, where 
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‘T’ abbreviates an appropriate description, and the indexical provability 
operator ‘I can prove that. . .’, in a context in which I am (i.e. realize) a 
Turing machine with machine table T (where ‘can prove’ abbreviates 
something like ‘has a proof in its system’). Although the two operators 
are extensionally equivalent, they may satisfy different principles under 
embedding, if I cannot prove that I am a Turing machine with machine 
table T. As Paul Benacerraf pointed out long ago, I might be a Turing 
machine without knowing which Turing machine I am (Benacerraf 
1967). In particular, if I can prove that I cannot prove that 0=1, then 
it follows that a Turing machine with machine table T can prove that I 
cannot prove that 0=1, but it does not follow that a Turing machine with 
machine table T can prove that a Turing machine with machine table T 
cannot prove that 0=1, just as Bew(‘-Bew(‘il)l) was seen above not 
to follow from 0-01 for an arbitrary provability operator 0 in PA. The 
present provability operators belong to a more expressive language than 
LpA, but the logical point remains the same. 

The objection applies even if the argument appeals to the first 
incompleteness theorem rather than the second. Unlike the latter, the 
former is not sensitive to differences between coextensive provability 
operators, because its statement-that in any consistent recursively 
axiomatizable extension of PA some sentence is neither provable nor 
disprovable-does not involve embedded occurrences of the provabil- 
ity operator. However, the anti-mechanistic argument claims that I can 
prove the supposedly undecidable sentence G for my system; but the 
purported proof requires the consistency [a-consistency] of my system 
as a lemma, so the same objection applies. 

I might even know that I am a Turing machine without knowing 
which Turing machine I am (see Reinhardt 1986). In effect, such a 
possibility is addressed by Penrose (1994, pp. 132-137). Penrose offers 
only plausibility arguments against it. He finds it unlikely that I could 
prove each sentence enumerated by a given algorithm without being 
able to prove the generalization that every sentence enumerated by the 
algorithm is true, but such claims of likelihood are unreliable in an area 
so full of surprises. The execution of the algorithm may involve me in a 
progressively more complex thought procedure for each sentence. 
There is no guarantee that I can discern the common pattern in these 
procedures; even if I am told what it is, there is no guarantee that I will 
be convinced that it always yields correct results, even though, in each 
particular case, running through the procedure convinces me that that 
particular result is correct. 
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The point essentially concerns provability operators, not provability 
predicates. If BewI is an indexical provability predicate, S is my system, 
and quotation marks are used in the ordinary way, then BewI would 
presumably satisfy the Hilbert-Bernays-Lob derivability conditions (1)- 
(3). My system presumably satisfies (5)-(7) and provides the elemen- 
tary syntax needed for (4). However, when diagonalization is applied to 
formulas involving BewI in attempt to prove the second incompleteness 
theorem for BewI, it yields an intuitively paradoxical sentence whose 
intended reading is something like ‘I cannot prove this sentence’; in 
contrast, Godel’s use of diagonalization yields a sentence whose 
intended reading makes an ordinary statement about numbers. Not 
surprisingly, reasoning with self-referential sentences involving BewI 
does lead to inconsistency (if consistency is claimed). The use of an 
indexical provability operator yields no such paradox, because it is not 
susceptible to diagonalization (these remarks address a worry devel- 
oped in the appendix to Benacerraf 1967). For example, as noted above, 
the deviant provability operator O+ cannot be factorized into a prova- 
bility predicate and a quotation functor. 

The deviant provability operators introduced by Kreisel, Takeuti 
and Feferman are defined from provability predicates, and so do not 
satisfy (1)-(3), otherwise the second incompleteness theorem would be 
derivable for them. They are therefore less threatening than O+ to the 
anti-mechanistic argument, since they seem to differ so markedly from 
the indexical provability operator in the satisfaction of principles. 
Nevertheless, it would be interesting to know what deviant systems 
of modal logic are constituted by the principles that they do satisfy. 

Example 3 combines elements of Examples 1 and 2. Like Example 
1, it exploits the contrast between first-personal and descriptive self- 
presentation. Like Example 2, it concerns the principle expressed in La 
as O ( 0 p  =I p). For present purposes, the principle at issue in Example 1, 
expressed in L as u p  2 OOp, may be treated as unproblematic for both 
the descriptive and the indexical provability operators, although for 
somewhat different reasons in the two cases (it is also a theorem of 
both GLS and Grz). The analogy with Example 2 is strengthened if my 
system is defined as the set of sentences that express my mathematical 
and metamathematical knowledge, i.e. that are provable on the basis of 
my knowledge-yielding axiom schemata and inference rules. Since 
knowledge cannot be false, I can give a trivial consistency proof for 
my system, so defined; it will be necessary to use a knowledge operator 
rather than predicate to avoid Liar-like paradoxes. Some of the themes 
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in this example are developed at more length in Shin and Williamson 
1994 and Williamson 1998. 

Example 4 involves metaphysical rather than epistemic or doxastic 
modalities. Nathan Salmon has argued that there are counterexamples 
concerning the possible constitution of artifacts to the analogue of the 
KK principle for metaphysical necessity, i.e. to the 4 axiom u p  3 oop 
(equivalently, Oop 3 Op) familiar from the modal system S4 (= KT4; 
0 is throughout a metalogical abbreviation for -U-). The soundness of 
his argument is not at issue here. (See his 1989 and, for some objec- 
tions, Williamson 1990, pp. 126-143, to which Salmon 1993 is a reply. 
A reply to this must await another occasion.) What is relevant is one 
part of his response to those who find the modal system S5 (= KT5) 
compelling as a logic for metaphysical necessity. S5 adds to the system 
S4 the other half of what is required for necessity always to be a non- 
contingent feature, the 5 (= E) axiom -up 3 0 - u p  (equivalently, 
Oop 3 up). S5 is the logic of necessity as truth in all possible worlds, 
on the assumption that it is not contingent what worlds are possible. 
Strictly, S5 also embodies the assumption that the actual world is 
possible: it contains the T axiom u p  3 p (equivalently, p 3 Op). A 
logic stronger than S5 would result if and only if a specific finite upper 
bound to the number of possible worlds were imposed in addition to the 
T and 5 axioms (for the ‘only if‘ direction, use Scroggs 1951; the ‘if‘ 
direction is routine). Such a bound is surely incorrect when is read as 
metaphysical necessity: for each natural number n, it is metaphysically 
possible for there to be exactly n planets. 

Salmon suggests that those who find S5 compelling as a logic for 
metaphysical necessity confuse necessity with actual necessity, i.e. with 
the property of being necessary in this, the actual world (1989, p. 30). 
For even if it is contingent whether it is necessary that P, it is non- 
contingent whether it is actually necessary that P, simply because it is 
non-contingent whether anything is actually the case. What is the case 
relative to a given world is not itself a world-relative matter. The logic 
of actual necessity is, uncontentiously, S5; necessity is easily confused 
with actual necessity, for the two are in some sense a priori equivalent 
(see Davies and Humberstone 1980 for some relevant background on 
‘actually ’ ) . 

To be more precise: First expand L, to a language Lam by adding a 
new primitive operator @, to be read as ‘actually’. Axiomatize a 
preliminary bimodal system KT@ for necessity and actuality by taking 
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all truth-functional tautologies and all formulas of the forms 
o(a 3 p) 2 (oa 3 up), oa I> a, @(a 3 p) 3 (@a 2 @p), @-a 5 

-@a, @a 3 @@a and @a 3 o@a as the axioms and MP, necessita- 
tion and actualization (i.e. the rule that if a is a theorem then so is @a) 
as the rules of inference. KT@ is a conservative extension of the 
familiar modal system KT (= T), in the sense that the theorems of 
KT@ in which @ does not occur are just the theorems of KT. To 
axiomatize KT, drop all the axiom schemata in which @ occurs and 
the rule of actualization from the axiomatization of KT@. KT and KT@ 
correspond to an interpretation of 0 on which oa is true at a world w 
just in case a is true at all worlds accessible from w, where the only 
constraint on accessibility is that each world is to be accessible from 
itself. The theorems of KT are uncontentious when is read as meta- 
physical necessity. KT@ corresponds to an interpretation of @ on 
which @a is true at a world w just in case a is true at a fixed world a. 
However, its theorems are the formulas guaranteed to be true at all 
worlds; thus a is in no way privileged as the actual world in the 
semantics of KT@. It is privileged in the system KT@S, whose theo- 
rems are the formulas guaranteed to be true at a itself. KTOS is an 
extension of KT@ ('S' for Solovay, since the construction of KT@S 
from KT@ resembles that of GLS from GL). To axiomatize KT@S, 
take all theorems of KT@ and all formulas of the form @a I> a as the 
axioms and MP as the rule of inference (since KT@ is decidable, the 
axiomatization is recursive). All formulas of the form a I> @a are 
derivable in KT@S. KT@S is not closed under necessitation, for 
@ p  3 p is a theorem but O ( @ p  3 p )  is not. @p 2 p is guaranteed to 
hold at the actual world, but not at all possible worlds. 

A different way to define an operator that satisfies the S4 axiom out 
of one that does not is to let O*a be the infinite conjunction of a, oa, 
Una, . . . . The accessibility relation for U* is the reflexive ancestral, 
which is automatically transitive, of the accessibility relation for a. 
This construction does not serve Salmon's purposes, however, for he 
also denies the logical truth of the B axiom p 2 oop,  which is derivable 
in S5 (it is not even entirely clear why Salmon should regard the T 
axiom as a logical truth; its obviousness alone does not qualify it as 
such). The B axiom is not guaranteed to hold for U*: it corresponds to1 
the symmetry of the accessibility relation, and the reflexive ancestral of 
a non-symmetric relation may itself be non-symmetric. 

What must be shown is that S5 is the logic of @o in KT@S. More 
precisely, it must be shown that if a is any formula of L, and "a is the 
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result of replacing each occurrence of in a by @o, then a is a 
theorem of S5 if and only if "a is a theorem of KT@S. To axiomatize 
S5, add all formulas of the form -Oa I> U-oa to the axiomatization of 
KT above. One can show by induction on the length of the proof of a 
that if a is a theorem of S 5  then "oa is a theorem of KT@, and 
therefore of KT@S; but "oa 2 "a is a theorem of KT@S, so "a is 
too. (One cannot argue directly that "a is a theorem of KT@S, because 
KT@S is not closed under necessitation and the induction step for the 
rule of necessitation in S5 would break down. And although KT@ is 
closed under necessitation, it does not follow that "a is a theorem of 
KT@, e.g. when a = o p  3 p. But although @ u p  3 p is not a theorem 
of KT@, @O(@Up 2 p) is; hence the indirect strategy used.) Conver- 
sely, if a is not a theorem of S5 ,  then by a standard completeness 
theorem for S5 there is a possible worlds model in which a is false at a 
world w and the accessibility relation holds universally; this can easily 
be turned into a model of KT@S by the selection of w as the actual 
world; a is still false at w in the new model; but a and "a are true at the 
same worlds in this model (since the worlds accessible from a given 
world are those accessible from the actual world); thus "a is false at the 
actual world in the model of KT@S, so a is not a theorem of KTOS. 
(Some related and more general results are discussed in $5.) Although 
the operators and @O are coextensive in the set of all models of 
KT@S, because na = @oa is a theorem for every formula a, they 
satisfy different principles. For example, @ u p  3 @o@op and 
-@Up I> @O-@op are theorems but up I> m p  and -up =I 0-Op  
are not. Correspondingly, o ( p  = @up) is not a theorem of KT@S. 

The relation between and @U might be thought to be just a 
complex variation on the relation between the trivial identity operator 
and @, which would make the occurrence of in the example inessen- 
tial. But in a language in which @ is the only primitive operator other 
than the usual truth-functional ones, with a semantics on which @ is 
coextensive with the identity operator, the two operators satisfy exactly 
the same principles. Another operator is required to bring out their 
latent difference. 

Example 5. A similar phenomenon can arise even when the coexten- 
sive operators are in some sense synonymous. Consider a language L 
with atomic sentences 40, 41, q2 ,  . . ., the truth-functional operators 3 
and I,  and two further operators O1 and 02. Let models be ordered 
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pairs <X,Y>, where X is a set of atomic sentences and Y a set of 
sentences of L. Define truth at a model (11) recursively, as follows: 

It 4 just in case 4 E X 
<X,Y> It I in no case 
<X,Y> It a 2 p just in case either not <X,Y> It a or <X,Y> It p 
<X,Y> It Ola just in case a E Y 
d , Y >  It 02a just in case a E Y 

Since the clauses for O1 and 0 2  have exactly the same right-hand side, 
one might regard 0 1  and 0 2  as synonymous, and conclude that they are 
interchangeable in all contexts sulva veritate. Any formula of the form 
O l a  = 02a is indeed true at any model, so O1 and O2 are coextensive. 
However, if Olq E Y but 024 c# Y, then <X,Y> It OIOlq but not 
<X,Y> It 0 2 0 2 4 .  It does not immediately follow that O1 and 0 2  satisfy 
different principles with respect to the set of all models; indeed, if no 
further restrictions are imposed on the models, the symmetrical treat- 
ment of O1 and O2 will ensure that they satisfy the same principles. But 
if every model <X,Y> meets the condition that O l a  E Y and 02a c# Y, 
then O1 will satisfy the principle OOp while O2 satisfies the principle 

Of course, if the condition that O1a E Y and 02a c# Y followed 
from the semantics of O1 and 02, then they would not be synonymous. 
But the asymmetry could arise in other ways. For example, if the 
models are just contexts of utterance in the actual world, then the 
asymmetry might arise from mundane facts. 

For any particular application of the formal semantics, some expla- 
nation would naturally be needed of the significance of the second 
element Y of a model. If the explanation permits a model <X,Y> for 
which Olq E Y but 0 2 q  B Y, so <X,Y> It OlOlq and <X,Y> It 02014  
but neither <X,Y> It 0 1 0 2 q  nor <X,Y> It 0202q,  then it is natural to 
conclude that O1 and O2 have quotational features, since each yields 
two sentences of different truth-value when applied to the synonymous 
sentences Olq and 02q.  For example, Y might contain all sentences 
uttered at a given time and place. Thus Ola  and 0 , p  may differ in 
meaning when a and p have the same meaning; likewise for 02. For this 
reason, one may be unwilling to class O1 and O2 as propositionul 
operators; nevertheless, they remain well-defined operators on sen- 
tences (for a related discussion see Cresswell 1983). Note that Exam- 
ples 1-4 do not depend on quotationality. 

- 0 o p .  

Copyright © British Academy 1998 – all rights reserved



ITERATED ATTITUDES 101 

2. A generalization 

It is time to give a precise general statement of the phenomenon 
exemplified in the previous section. Start with an interpreted language 
L, assumed to contain at least the truth-functional operators 3 and 1. 
Suppose that the sentences of L are evaluated as true or false at 
members of a set I, known as indices. They can be possible worlds, 
contexts of utterance, ordered pairs of worlds and contexts, or anything 
else; their role is simply to give the account generality. When the 
generality is not wanted, I can have just one member. In Examples 
1-3 one can take the only index to be, respectively, a context of 
utterance in which I (the speaker) am the man with a hole in his pocket, 
a world in which Socrates is wise, and a context of utterance in which I 
am a Turing machine with machine table T. I and I> will be assumed to 
behave according to their usual truth-tables at each index i: I is not true 
at i and a 3 p is true at i if and only if either a is not true at i or p is true 
at i, for all sentences a and p of L. 

If O1 and 0 2  are sentence operators of L, say that O1 and O2 are 
coextensive just in case, for every sentence a of L and every index i, 
O l a  is true at i if and only if Oza is true at i (since the indices will 
sometimes be possible worlds, it would be just as appropriate to speak 
of cointensiveness). The indices are not required to include all the 
points at which the semantics of L evaluates its sentences; rather, 
they are a subset of such points in which we happen to be interested. 
For example, in Example 4 the semantics of the modal language L with 
the ‘actually’ operator may be two-dimensional, evaluating sentences at 
pairs of worlds <w,x>, of which w is the context of utterance and x the 
context of evaluation proper; thus @a is true at <w,x> if and only if a is 
true at <w,w>. If we are interested in the evaluation of utterances at the 
context in which they are made, we can take the indices to be the pairs 
<w,w> ‘on the diagonal’, with respect to which 0 and @U are coex- 
tensive. They are not coextensive if all pairs are taken as indices. 

As in Example 3, a principle is a formula of L. If 0 is a sentence 
operator of L, an 0-translation is a mapping * from formulas of L to 
sentences of L such that for all formulas a and p of Lo, *(a I> p) = 
*a 2 *p, *I = I and *Oa = O*a. 0 satisjes a principle a just in case 
*a is true at every index i for every 0-translation *. The phenomenon of 
interest is just that not all coextensive operators satisfy the same 
principles. 
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The choice of L, to record principles is purely notational: it does not 
assume the operator 0 to have anything in common with a necessity 
operator beyond being a one-place sentential operator. The modal 
language has the merit of familiarity; many of its formulas and sets 
of formulas already have names. 

Coextensiveness and satisfaction of the same principles are condi- 
tions at the same level of generality; they are defined by quantification 
over the same set of indices. If coextensiveness had been defined by 
quantification only over actual items of some kind, and satisfaction of 
the same principles by quantification over all logically possible items of 
that kind, then the failure of the former to imply the latter would not 
have been surprising; but there is no such disparity in the definitions 
above. 

The principles over which coextensive operators can differ always 
involve some self-embedding of 0. If a Jirst-degree principle is a 
formula of L, in which no occurrence of 0 lies within the scope of 
another, then coextensive operators O1 and O2 satisfy exactly the same 
first-degree principles. For let *1 be any 01-translation, and let * 2  be the 
02-translation that agrees with *1 on propositional variables. If a does 
not contain 0, then *la = *2a, so *10a (= 01*1a) and *20a (= 02*2a 
= 02*la) are true at the same indices by coextensiveness, so *la is true 
at the same indices as *2a for any first-degree formula a. Thus if 0 2  

satisfies a first degree formula, then so too does O1. The converse 
follows by a parallel argument. But even the simplest kind of self- 
embedding, as in OOp, permits coextensive operators to differ in satis- 
faction of principles. 

One limit to the phenomenon of coextensiveness without satisfac- 
tion of the same principles is that it cannot involve truth-functional 
operators. If 0 is truth-functional, then any operator coextensive with 0 
satisfies the same principles as 0. In the present context, it is natural to 
stipulate that an operator 0 in L is truth-functionul just in case for all 
sentences a and p of L and all indices i andj, if the truth-value of a at i 
is the truth-value of p at j then the truth-value of O a  at i is the truth- 
value of Op at j. However, the limit to the phenomenon is more general 
than that. Say that 0 is extensional just in case for all sentences a and p 
of L and all indices i, if the truth-value of a at i is the truth-value of p at 
i then the truth-value of Oa at i is the truth-value of Op at i ,  in other 
words, just in case 0 satisfies the principle ( p  q)  3 (up oq). All 
truth-functional operators are extensional, but not all extensional opera- 
tors are truth-functional. For example, let 0 . . . be the material bicon- 
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ditional ‘. . . if and only if it is raining’, and let I contain both an index i 
at which it is raining and an indexj at which it is not raining; then, 
where T is I ZJ I, OT is true at i and false at j ,  even though T has the 
same truth-value at i andj, so 0 is not truth-functional; nevertheless, 0 
is obviously extensional. The example also shows that no principle 
characterizes truth-functionality in the way that ( p  q )  3 (up oq) 
characterizes extensionality : if there were such a principle, 0 would 
satisfy it too. (For a thorough discussion of a distinction closely 
related to that between truth-functionality and extensionality see Hum- 
berstone 1986. The present phenomenon is closely related to the fact, 
stated in his terminology, that if Ola  and 02a always imply each 
other in a logic, it does not follow that each of 01 and 0 2  is a 
subconnective of the other. He points out that if O l a  always implies 
02a, it does not follow that 01 is a subconnective of 0 2  (1986, p. 41). 
Note that his notions, unlike the present ones, are defined relative to a 
logic.) One limit to the phenomenon is this: if 0 is extensional, then 
any operator coextensive with 0 satisfies the same principles as 0. 

To establish the point, argue as follows. Let 0 be any extensional 
operator in L, and 0’ any operator in L coextensive with 0. Let * be any 
O-translation, and *’ the 0’-translation such that * p  = *’p for each 
propositional variable p .  It can be shown by induction on the complex- 
ity of a E Lo that for any index i, the truth-value of *a at i is the truth- 
value of *’a at i. The only interesting case is the induction step for 0. 
Suppose that the truth-value of *a at i is the truth-value of *‘a at i (the 
induction hypothesis). Then the truth-value of *na at i is the truth-value 
of O*a at i (since * is an O-translation), which is the truth-value of 
O*’a at i (from the induction hypothesis, since 0 is extensional), which 
is the truth-value of O’*’a at i (since 0 and 0’ are coextensive), which 
is the truth-value of *’oa at i (since *’ is a 0’-translation), as required. 
It follows that if 0’ satisfies the principle a, then so too does 0’. 
Conversely, by a parallel argument, if 0 satisfies a, then so too does 
0’. Thus 0 and 0’ satisfy the same principles, QED. 

Perhaps a more intuitive way of making the point is this. Evidently, 
any operator coextensive with an extensional operator is itself exten- 
sional. Now at any given index a (singulary) extensional operator 
behaves according to one of the four singulary truth-tables; which 
one is fixed by the truth-values of the results of applying it to T and 
I, which are the same from one of two coextensive operators to the 
other. Thus coextensive extensional operators behave according to the 
same truth-table at any given index. The principles that an extensional 
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operator satisfies are fixed by the set of truth-tables according to which 
it behaves at at least one index; thus coextensive extensional operators 
satisfy the same principles. Since the set of singulary truth-tables has 
just 16 subsets, there are just 16 possibilities for the set of principles 
that an extensional operator satisfies (or 15 if the set of indices is 
required to be non-empty. Humberstone 1995 arrives at an answer 
greater than 16 to what may look like the same question by individuat- 
ing operators according to consequence relations rather than in the 
present semantic manner.) 

The phenomenon of coextensiveness without satisfaction of the 
same principles can be generalized to n-ary operators where n > 1, 
although a more complex language than L,, would be needed to keep 
track of it. For example, one could seek coextensive conditionals that 
satisfy different principles. The preceding remarks show that the phe- 
nomenon arises only for non-truth-functional conditionals. Example 4 
provides an obvious example, for strict implication ( ~ ( p  2 q)) and 
actualized strict implication ( @ K I ( ~  3 4)) are coextensive in KT@S 
without satisfying the same principles. Since necessity is definable in 
terms of strict implication, this is just a notational variant of Example 4. 
Necessity can equally well be defined in terms of many other condi- 
tionals (e.g. the counterfactual conditional) by an equivalence 
between na and -a * a, so similar examples can be manufactured 
for them too. In such cases, if p q can be interpreted as contingently 
true (as it can when + is the counterfactual conditional), then the 
principle (p  q)) will fail, while the corre- 
sponding principle holds for the actualized variant of a, even if the 
logic of necessity is assumed to be S5. Similar remarks apply to the 
principle (p  + q)  + (Y + (p  4)). It would be interesting to have 
examples in which the principles at stake have been subject to more 
controversy in discussion of conditionals (see Dorothy Edgington’s 
contribution to this volume). 

q)  I> ( - ( p  + q) + ( p  

3. Systems of principles 

To investigate the phenomenon of coextensiveness without satisfaction 
of the same principles more deeply, one must look at the systems of 
modal logic constituted by the principles that given operators satisfy. 
Some terminology will help. A (mono)modul system is a subset of the 
language (set of formulas) Lo containing all truth-functional tautologies 
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and closed under uniform substitution (US) and MP. A normal (mono)- 
modal system is a (mono)modal system containing the formula 
o ( p  3 q)  2 ( U p  3 0s)  and closed under necessitation. In effect, nor- 
mality means that 0 is closed under deductive consequence in the 
system. These definitions are extended to polymodal languages in the 
obvious way, e.g. if the language contains the primitive modal operators 
ol, . . . 0, then normality requires the system to contain the formula 
o j ( p  3 q)  3 ( U j p  3 ojq) and to be closed under necessitation for oj 
for eachj from 1 to n. If S is a modal system, write FS a for a E S. A 
set of formulas in the language of S is S-consistent just in case it has no 
finite subset { al, . . . , ak} such that Fs -(a1 & . . . & ak). 

The set of principles that an operator 0 satisfies is automatically 
closed under US. For given any substitution o and 0-translation *, the 
mapping of each formula a of L, to *oa is also an 0-translation; thus if 
0 satisfies a, then *oa is true at every index; thus every 0-translation 
of oa is true at every index, so 0 satisfies oa. Since the primitive truth- 
functional operators of Lo (I and 2) behave in L according to their 
usual truth-tables at every index and commute with every 0-translation, 
0 satisfies all truth-functional tautologies in Ln, and if 0 satisfies a 2 p 
and a then it satisfies p. Thus the principles that an operator satisfies 
always constitute a modal system. 

Conversely, any modal system S is the set of all principles satisfied 
by some operator 0 for some index set I. To establish this, let the base 
language L be L itself, 0 be U, I be the set of all maximal S-consistent 
subsets of L, and a be true at i (E I) just in case a E i .  Since S contains 
all truth-functional tautologies and is closed under MP, this gives the 
right truth-conditions for I and a I> p. U-translations are simply uni- 
form substitutions, so every 0-translation of a is true at every index if 
and only if every substitution instance of a belongs to every maximal S- 
consistent set, i.e. if and only if every substitution instance of a is a 
theorem of S, i.e. if and only if a is a theorem of S (since S is closed 
under US). Thus the theorems of S are exactly the principles that U 
satisfies. 

In many cases, the principles that an operator satisfies do not con- 
stitute a normal modal system. Normal systems are especially tractable, 
however, and therefore make a good point of departure. 

Some logical questions can now be raised. How widespread is the 
phenomenon of coextensiveness without satisfaction of the same prin- 
ciples? More specifically: given the principles that two operators 01 
and O2 satisfy, when is it consistent to suppose that 01 and 0 2  are 

Copyright © British Academy 1998 – all rights reserved



106 Timothy Williamson 

coextensive? The question can be taken in more than one way. One 
reading is this: given two monomodal systems S1 and Sz, when is there 
a language L with a non-empty index set I and coextensive operators O1 
and O2 such that O1 satisfies all the principles in S1 and O2 satisfies all 
the principles in Sz? The index set is required to be non-empty in order 
not to make the answer trivially ‘Always’, since any operator vacuously 
satisfies any principle if the index set is empty. On this reading of the 
question, O1 may also satisfy some principles not in S1 and O2 may also 
satisfy some principles not in S2. It follows that this reading does not 
address the phenomenon at issue very well. For even if S1 and S2 are 
distinct systems, and 01 satisfies every principle in S1 and 0 2  satisfies 
every principle in S2, the two operators may satisfy exactly the same 
principles. 

The extent of the problem can be illustrated as follows. Let SI and 
S2 be any two normal systems. If OT (T a tautology) is a theorem of 
neither S1 nor S2, then every principle of both S1 and S2 is satisfied by 
any operator 0 such that, for each index i and sentence a of L, O a  is 
true at i. For example, O a  could be a 3 a. Proof Let Ver be the 
smallest normal system of which 01 i s  a theorem. If OT is not a 
theorem of a normal system S, then Ver is an extension of S. For let 
S+ = { a~ L,: Fs 01 =I a}. S+ is easily shown to be a consistent normal 
extension of Ver, and therefore to be Ver (which is Post-complete). If 
Oa is true at every index for every aeLo,  then 0 satisfies every 
principle in Ver, and therefore every principle in S, of which S+ is an 
extension. 

Similarly, if both S1 and S2 have consistent normal extensions of 
which OT is a theorem, then every every principle of both S1 and S2 is 
satisfied by any operator 0 such that, for each index i and sentence a of 
L, Oa is true at i if and only if a is true at i. For example, Oa could be a 
itself. Proof Let Triv be the smallest normal system of which u p  = p is 
a theorem. If a system S has a consistent normal extension S’ of which 
OT is a theorem, then Triv is an extension of S. For let o be the 
substitution such that o p  = T for each propositional variable p ,  and 
put S+ = {EL: Fs oza for every substitution 7). S+ is easily shown 
to be a consistent normal extension of Triv, and therefore to be Triu 
(which is Post-complete). If Oa is true at an index if and only if a is, for 
every  EL,, then 0 satisfies every principle in Triv, and therefore 
every principle in S’, of which S+ is an extension, and therefore every 
principle in S. 

Each result covers a wide class of cases, in all of which one can 
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choose 0 1  and 0 2  to be identical, so that they automatically satisfy the 
same principles. Thus, on this reading, the question does not elicit 
coextensiveness without satisfaction of the same principles. 

There are, however, some pairs of coextensive operators O1 and O2 
such that 01 satisfies every principle in a normal system S1, O2 satisfies 
every principle in a normal system S2, and no operator could consis- 
tently satisfy every principle in both SI and S2. For example, let S1 be 
the smallest normal system of which 001 is a theorem, and S2 be KD 
(=D), the smallest normal system of which OT is a theorem. Since 
- 0 0 ~ i s  a theorem of KD, no operator could satisfy every principle 
in both S1 and SZ with respect to a non-empty set of indices. Never- 
theless, define two operators as follows. There is only one index, so this 
parameter can be suppressed. Truth and an auxiliary notion of pseudo- 
truth are defined by simultaneous recursion. Take the truth or falsity of 
atomic sentences as given. An atomic sentence is pseudo-true just in 
case it is true. Both truth and pseudo-truth behave in the usual way with 
respect to I and 3. O l a  is true just in case a is pseudo-true; 02a is true 
just in case a is pseudo-true; O l a  is pseudo-true in any case; 02a is 
pseudo-true just in case a is pseudo-true. The semantics works just like 
a possible worlds semantics for O1 and O2 as necessity-like operators 
whose accessibility relations are { <i,j>} and { <i,j>,<j,j>} respectively 
on a set of worlds { i,j}, where truth is truth at the actual world i and 
pseudo-truth is truth at j .  Validity is taken as truth at the actual world 
for any truth-assignment to atomic formulas at worlds. In this semantics 
it is stipulated that only the actual world is an index. By induction on 
the length of proofs in the natural axiomatizations of SI and S 2  with 
MP and necessitation as the only rules of inference, it is easy to check 
that every 01-translation of every theorem of S1 and every 02-transla- 
tion of every theorem of S2  is both true and pseudo-true, and therefore 
that O1 and O2 satisfy every principle of S1 and S2  respectively. In fact, 
O1 and 0 2  satisfy more principles than those of SI and S2 respectively; 
for example, O1 satisfies OT, which is not a principle of S1 (but 01 does 
not satisfy DOT; the principles that it satisfies do not constitute a normal 
system). Note that truth is all that matters for satisfaction of principles, 
but pseudo-truth must also be established for the inductive argument to 
go through. In particular, 01 satisfies 001 and 0 2  does not. Thus 01 
and 0 2  satisfy different principles. Indeed, they satisfy inconsistent 
principles, for 0 2  satisfies -00.~. Nevertheless, 01 and 0 2  are coex- 
tensive, for each of O l a  and 02a is true just in case a is pseudo-true. 

A different question needs to be asked. Given two monomodal 
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systems S1 and S2, when is there a language L with an index set I and 
coextensive operators 01 and 0 2  such that O1 satisfies all and only the 
principles in S1 and 0 2  satisfies all and only the principles in S2? Note 
that if S1 and S2 are distinct any case in which such operators exist is a 
case of coextensiveness without satisfaction of the same principles. 

The question can be reformulated in terms of bimodal logic. Let Ir, 
be the result of extending L,. by a second modal operator D. Given an 
interpreted language L with at least the operators I, I>, O1 and 02, 
define an 01,02-translation to be a mapping * from formulas of L, to 
sentences of L such that for all formulas a and p of L,, 
*(a 3 p) = *a 3 *p, *L = I, *oa = Ol*a and *.a = 02*a. The 
ordered pair <01,02> satisfies a principle a (EL-) just in case *a is 
true at every index in the relevant set for every 01,02-translation *. If 
S1 and S2 are monomodal systems in Lo, let S1@S2 be the smallest 
bimodal system in L. containing every theorem of S1 and the result of 
substituting for 0 throughout every theorem of S2. Let SltS2 be the 
smallest bimodal system containing S1@S2 and the formula up E .p 
(by US, SltS2 contains every formula of the form ua = .a). A bimodal 
system S in L, conservatively 0-extends a monomodal system S’ in LO 
just in case the .-free theorems of S are exactly the theorems of S’; S 
conservatively .-extends S’ just in case the results of substituting U for 

throughout the U-free theorems of S are exactly the theorems of S’. 
Then there is a language L with coextensive operators O1 and O2 and an 
index set I with respect to which O1 satisfies all and only the principles in 
S1 and 0 2  satisfies all and only the principles in S 2  if and only if SI-fSz 
conservatively n-extends S and conservatively .-extends S2. 

The equivalence can be established as follows. Suppose that there is 
a language L with coextensive operators O1 and O2 and an index set I 
with respect to which O1 satisfies all and only the principles in S1 and 
O2 satisfies all and only the principles in S2.  Let S be the set of all 
principles in Low that <01,02> satisfies. S is a bimodal system. S 
extends S1, for if a is a theorem of S1 then O1 satisfies a, so every 
01-translation of a is true at every index; but the restriction of any 
01,02-translation to Lo is an 01-translation, so every 01,02-translation 
of a is true at every index, so a is a theorem of S. Similarly, S contains 
the result of substituting for U throughout every theorem of S2. 
Thus S extends SI@&. Since O1 and O2 are coextensive, S contains 
up = mp. Thus S extends SltS2. Now S conservatively u-extends SI. 
For let a be a .-free theorem of S; thus every 01,02-translation of a 
is true at every index; but every 01-translation has a (unique) extension 
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to an 01,02-translation, so every 01-translation of a is true at every 
index, so a is a theorem of S 1. Similarly, S conservatively m-extends S2. 
Since S extends SltS2, the latter conservatively o-extends SI and 
conservatively m-extends S2 too. This establishes one half of the 
equivalence. Conversely, suppose that S tS2 conservatively 0-extends 
S1 and conservatively .-extends S2. Let the base language L be I- 
itself, O1 and O2 be 0 and . respectively, I be the set of all maximal 
SltS2-consistent subsets of L., and a be true at i (E I) just in case a~ i. 
By an earlier argument, 0 satisfies a principle a of L, if and only if a is 
a theorem of SltS2; since the latter conservatively 0-extends SI, 
satisfies a if and only if a is a theorem of S1. Similarly, satisfies a 
if and only if a is a theorem of S2. Since every formula of the form 
oa = .a is a theorem of SltS2, and are coextensive. Thus there is 
a language L with coextensive operators O1 and O2 and an index set I 
with respect to which O1 satisfies all and only the principles in S1 and 
O2 satisfies all and only the principles in S2,  as required. 

Our question is therefore this: when does S1 tS2 conservatively 
0-extend a monomodal system S1 and conservatively .-extend a mono- 
modal system Sz? In brief, when is S1tS2 a conservative extension? As 
noted in $2, coextensive operators satisfy the same first-degree princi- 
ples. Thus a necessary condition for SITS2 to be a conservative exten- 
sion is that for every first-degree formula a of Lo, a is a theorem of SI if 
and only if a is a theorem of S2. However, the condition is not 
sufficient. For let S1 be the smallest normal modal system containing 
OOI, and let S 2  be the smallest normal modal system containing 
(-p & U p )  3 001. S1 and S2 can be shown to have exactly the same 
first-degree theorems (Appendix, Proposition 1). Nevertheless, SltS2 
does not conservatively .-extend S2, for it has the following sequence 
of theorems: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

( - p  & .p) 3 ..I 

(-I & .I) 3 ..I 
(-01 & .RI) 3 ..I 

(.I v (-01 & .UI)) 
op = .p 
01 E .I 
.U1 3 ..I 

001 E .01 
001 
..I 

s 2  

1 us 
1 us 

SltS2 
5 us 
4 , 6  PC 
5 us 
SI 
7, 8, 9 PC 

3 ..I 2 , 3 P C  
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Informally, the derivation shows that no operator coextensive with one 
that satisfies 001 is truth-entailing, which is enough to discharge the 
antecedent in the S2 axiom. Thus if conservatively .-extends S2, 
then 001 is a theorem of S2. But 001 is not a theorem of S2, for, since 
(-p & up) 3 OOL is a tautological consequence of up I) p, all the- 
orems of S2 are theorems of KT (=T), which 001 certainly is not. 

is a conservative extension S1 
and S 2  often agree on little but their first-degree theorems, as earlier 
examples and later results show. It would be interesting to know 
whether agreement on first-degree theorems between S1 and S 2  is 
sufficient for SltS2 to be a conservative extension when S1 and S 2  
are normal extensions of KT, or more generally of KD. 

Similar remarks apply to a slightly stronger way of combining mono- 
modal systems. If S1 and S2 are systems in Ln, let S 1 0 2  be the smallest 
bimodal system in L, containing every theorem of S1 and the result of 
substituting for 0 throughout every theorem of S2 ,  and closed under 
the rules that if a = p is a theorem then so are .a = .P and oa E up. In 
particular, if S1 and S2 are normal systems, then so is S10S2, because it is 
closed under necessitation for both 0 and rn (for if a is a theorem of 
SlBS2, then so is a ET, and therefore Oa = OT and .a = m-r; but 
since S1 and S 2  are normal, OT is a theorem of each, so both na and 
ma are theorems of S10S2). In fact S16S2 is the smallest normal bimodal 
system to contain every theorem of S1 and the result of replacing by 
throughout every theorem of S2. Very roughly indeed, the difference 
between 0 and 8 is that in S1BS2, but not in S18S2,  each of and 
knows what the logic of the other is. Let SlSS2 be the smallest bimodal 
system containing S16S2 and the formula o p  = mp (by US, S10S2 
contains every formula of the form oa = .a). 

S1SS2 will not in general be a normal system, even if S1 and S 2  are 
normal, for it will not in general contain O(op  E mp). Obviously, S1$S2 
extends SltS2. The converse often fails, even when S1 and S 2  are 
normal. For example, 0mO-r is a theorem of KSK (indeed of KOK), 
but not of KtK (Appendix, Proposition 2). Another example of the 
difference between t and S can be gleaned from Example 4. On a view 
such as Salmon’s, the pair of operators <III,@O> satisfies all the prin- 
ciples of KTTSS, but not all the principles of KTSSS. For uo(mp 3 p) 
is a theorem of KTBS5 (indeed, of KOKT) and therefore of KTSSS, but 
it is not satisfied by the pair <O,@O>. If it were, oo(@op 3 p) would 
be a theorem of KT@S, in which case OO@op 2 oop would also be a 
theorem of KT@S; but since O p  I) OO@Op is a theorem of KT@S, so 

In spite of such examples, when 
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too would be O p  I> Oop,  which it is not (for an easy semantic argument 
shows KT@S to be a conservative extension of KT). Thus nn(.p 3 p )  
is not a theorem of KTtS5. 

From a semantical point of view, S1@S2 is usually a nicer system 
than S10S2, for it can be hard to give U and nice semantics when they 
do not act congruentially. Correspondingly, one might prefer to work 
with rather than with SltS2. However, the latter system is the 
relevant one in some applications, as has just been noted in respect of 
Example 4. Again, if the operators O1 and O2 satisfy just the principles 
of the monomodal systems S1 and S 2  respectively, and S1 is not closed 
under the rule that if a = p is a theorem then so is na E up, it follows 
that Sl$S2 does not conservatively 0-extend S1, so the only interesting 
question will be whether the pair of operators <01,02> satisfies all the 
principles of SltS2. Such a situation arose in Example 3, for is not 
congruential in the system GLS, which has (up 3 p )  = T but not 
O ( 0 p  3 p )  = UT as a theorem. GLStGrz conservatively 0-extends 
GLS and conservatively m-extends Grz; GLS$Grz is inconsistent, for 
the closure of GLS under necessitation is inconsistent. More generally, 
an earlier argument showed that SIPS2 is a conservative extension if 
and only if there are coextensive operators O1 and O2 such that 0 1  

satisfies all and only the principles in SI and O2 satisfies all and only the 
principles in S2; no parallel result has been proved for S1$S2. However, 
in the cases for which it is proved below that SITS2 conservatively 
0-extends a normal system SI and conservatively m-extends a normal 
system S2, it is also proved that SI$S2 conservatively 0-extends S1 and 
conservatively m-extends Sz. It would be interesting to know whether 
there are normal systems S1 and S 2  such that SITS2 but not S1$S2 
conservatively n-extends SI and conservatively m-extends S2. 

It must be checked whether, if SITS2 or S1$S2 is not a conservative 
extension, the reason is not simply that S 1 0 S 2  or SI@S2 is not a 
conservative extension; if that were the reason, non-conservativeness 
would show nothing specific about coextensiveness. Call a modal sys- 
tem S in Lo congruential just in case na E up is a theorem of S 
whenever a = p is. Thomason (1980) proved that if S1 and S2 are 
consistent congruential systems, then S1@S2 (and a fortiori S10S2) 
conservatively o-extends S and conservatively .-extends S2. (Kracht 
and Wolter 1991 give a different proof for the case in which S1 and S2 
are normal. See the latter paper and Fine and Schurz 1996 for many 
results transferring properties of normal SI and S 2  to S1@S2.) The result 
is trivial if SI and S2 are both inconsistent. Since an operator satisfies an 
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inconsistent set of principles if and only if the relevant index set is 
empty, if O1 and O2 are operators in L, and S1 and S2 are the systems of 
the principles satisfied by 01 and O2 respectively, then S1 is consistent 
if and only if S2 is. Thus if the congruential systems S1 and S2 are the 
systems of the principles satisfied by the operators O1 and O2 respec- 
tively in L, then S1@S2 (and a fortiori S10S2) conservatively U-extends 
S1 and conservatively m-extends S2. If S1 or S2 is non-congruential, 
then S1@S2 is not a conservative extension. But one can still prove that 
if S1 and S2 are consistent modal systems, then S 1 0 S 2  conservatively 
n-extends S1 and conservatively .-extends S2 (Appendix, Proposition 
4). Thus if S1 and S2 are the systems of the principles satisfied by the 
operators 01 and O2 respectively in L, then S 1 0 S 2  conservatively 
(7-extends S1 and conservatively .-extends S2. 

A sufficient condition for Sl$S2 (and therefore Sl.i-S2) to be a 
conservative extension can be developed in semantic terms, as follows. 
A frame is an ordered pair <W,R>, where W is a set (of ‘worlds’) and R 
is a binary relation (of ‘accessibility’) on W. <W,R> is said to be 
reflexive just in case R is reflexive; likewise for other frame conditions. 
A model based on <W,R> is a triple <W,R,V>, where V is a mapping 
from formulas of L, and members of W to {0,1} (0 for falsity, 1 for 
truth) such that for all WE W and ~ , P E  Lo, V(L ,w) = 0, V ( a ~ p , w )  = 1 if 
and only if V(a,w) I V(P,w), and V(oa,w) = 1 if and only if 
V(a,x) = 1 for every XE W such that wRx. A formula a is valid on a 
frame <W,R> just in case for every model <W,R,V> based on <W,R> 
and WE W, V(a,w) = 1.  A system S is valid on <W,R> just in case every 
theorem of S is; if S is valid on <W,R>, say that <W,R> is a frame for 
S. The logic of a class of frames r is the set of all formulas valid on all 
members of r. The logic of a class of frames is automatically a normal 
system, but not every normal system is the logic of a class of frames 
(the exceptions are the incomplete systems). Now let rl and r2 be 
classes of frames; let S1 and S2 be the logics of rl and r2 respectively. 
Suppose that for each frame <W1,R1>E rl and WE W1 there is a frame 
<W2,RZ>Er2 such that w€W2 and { x E W ~ :  wRlx} = { x E W ~ :  w R ~ x } ,  
and that for each frame < W 2 , R 2 x r 2  and W E W ~  there is a frame 
<Wl,R1>Erl such that, w6W1 and { x ~  W1: wR,x} = { X E  W2: WRZX]. 
Then S1$Sz (and therefore Sl.i-S2) conservatively 0-extends S1 and 
conservatively m-extends S2 (Appendix, Proposition 6). 

Informally, the condition says that the two classes of frames are 
locally alike, in the sense that what can be reached in one step Of 

accessibility from a given point is the same. This condition may be 
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compared with the syntactic necessary condition discussed above for 
Sl'fS2 (and therefore SISS2) to be a conservative extension: that SI and 
Sz should have the same first-degree theorems. The two conditions are 
closely related, for whether a first-degree formula is true at a world w 
depends only on worlds at most one step of accessibility from w. The 
two conditions are not equivalent, for the constraints that a system 
imposes on the one-step environments of worlds are not exhausted by 
its first-degree theorems. For example, if on1 is a theorem of S, then S 
is valid only on irreflexive frames, even though S may have the same 
first-degree theorems as a system that is valid on some (or even all) 
reflexive frames. Whereas a frame is reflexive if and only if u p  3 p is 
valid on it, there is no formula a~ L, (let alone a first-degree one) such 
that a frame is irreflexive if and only if a is valid on it, for the smallest 
normal system K is complete both for the class of all irreflexive frames 
and for the class of all frames. Irreflexivity is however characterized in 
a weaker sense by the rule that if (-p & u p )  2 a is a theorem then so 
is a, where the propositional variable p does not occur in a (Gabbay 
1981). An example of just this kind was used above to show that for SI 
and S2 to have the same first-degree theorems is not sufficient for SI.CS2 
or even SITS2 to be a conservative extension. The semantic sufficient 
condition above will be applied in $5. 

Within the framework just constructed, the rest of the paper addresses 
some more specific logical issues raised by the examples in $1. 

4. Solovay extensions 

Examples 2 and 3 (as regards the Solovay logic GLS) can be general- 
ized. Consider an operator 0 in a base language L with respect to an 
index set I. Suppose that for each index i, Oa is true at i only if a is true 
at i (e.g. 0 is 'Socrates believes that . . .', if Socrates is in fact a wise 
man at all indices) . . . Define a new operator O+ in L by the stipulation 
that O+a = Oa & a. Thus 0 and O+ are coextensive. The principles 
that O+ satisfies are related in a simple way to the principles that 0 
satisfies. Inductively define a mapping z from L, to L, thus: 

T P  = P 
zL = I 
z(a 3 p) = z(11 3 zp 
zoa = oza 82 za 
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For each O+-translation *, let *- be the unique O-translation such that 
* p  = *p  for each propositional variable p ;  for each O-translation *, let 
*+ be the unique O+-translation such that *+p = *p for each p .  It is easy 
to prove by induction on the construction of a formula a in Lo that for 
each O+-translation *, *a = *-za, and that for each O-translation *, 
*+a = *za. Now if O+ does not satisfy a, then *a is false at some index 
i for some O+-translation *, so *-za is false at i ,  so 0 does not satisfy 
za. Conversely, if 0 does not satisfy za, then *za is false at some index 
i for some O-translation *, so *+a is false at i ,  so O+ does not satisfy a. 
Thus O+ satisfies the principle a if and only if 0 satisfies the principle 
za. Let S be the system of principles that 0 satisfies. Then a necessary 
and sufficient condition for 0 and O+ to satisfy the same principles is 
that for each formula a in Lo, za is a theorem of S if and only if a is a 
theorem of S. 

By hypothesis, 0 satisfies the principle u p  2 p ,  which is therefore a 
theorem of S. Using this fact, one can show by induction on the 
construction of a that if S is congruential then za = a is a theorem 
of S. So 0 and O+ satisfy the same principles, if S is congruential. For 
present purposes, the interesting systems are therefore non-congruential 
ones. In some of the examples in $1, 0 and O+ satisfied different 
principles because O+ satisfied o(op 2 p )  while 0 did not. Correspond- 
ingly, the system of principles satisfied by 0 was non-congruential 
because (up 3 p )  = T but not u(up I> p )  = UT was a theorem. 

Non-congruential systems are often semantically recalcitrant. Some- 
times, however, the non-congruential system S' with the theorem 
u p  3 p has a congruential subsystem S without the theorem u p  I> p 
such that S' can be axiomatized with all theorems of S and all substitu- 
tion instances of u p  2 p as the axioms and MP as the only rule of 
inference. The non-congruential Solovay logic GLS stands in exactly 
this relation to the provability logic GL, which is normal, not just 
congruential. GL has a nice semantics: it is sound and complete for 
the class of all possible worlds models based on finite transitive irre- 
flexive trees. In contrast, there is no frame <W,R> and world WEW 
such that all theorems of GLS are true at w in all models based on the 
frame <W,R>. Proof: The theorem u(up 2 p )  3 u p  of GLS is true at 
WEW in all models based on <W,R> only if not wRw (consider an 
assignment on which p is true everywhere except at w); up 3 p is true 
at w in all models based on <W,R> only if wRw. 

More generally, let the Solovay extension of a system S be the 
smallest system containing up 3 p and every theorem of S ;  since 
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Solovay extensions are systems, they are automatically closed under 
MP and contain every substitution instance of up I) p. One can reverse 
the direction of investigation and examine the Solovay extensions of 
given congruential systems. 

Let S be a normal system, and S+ the Solovay extension of S. 
Suppose that S+ contains all and only the principles satisfied by an 
operator 0. Since S+ contains the principle u p  = (up & p), 0 and O+ 
are coextensive. What conditions on S ensure that 0 and O+ satisfy 
different principles? Obviously, if S already contains up I) p, then S+ is 
S itself (and conversely); in that case, S+ is normal, and therefore 
congruential, so by remarks above 0 and O+ satisfy the same principles. 
More interestingly, suppose that S admits the rule of disjunction, in the 
sense that whenever mal v . . . v Oa, is a theorem of S, so too is a, for 
some rn (l lrnln).  It can then be shown that any formula of the form oa 
is a theorem of S+ only if a is already a theorem of S (Appendix, 
Proposition 10). In particular, if ~ ( o p  I> p) is a theorem of S+, then 
o p  I) p is a theorem of S, and S+ is just S itself. Thus if S+ is a proper 
extension of S, then O ( 0 p  I) p) is not a theorem of S+, so 0 does not 
satisfy the principle ~ ( u p  I) p). On the other hand, zu(0p 3 p) = 
O((0p  & p )  3) p )  & ((up & p) 3 p), which is a theorem of every nor- 
mal system, hence of S, hence of S+; thus 0 certainly satisfies the 
principle zO(0p I> p), so 0' satisfies the principle ~ ( o p  I) p). What 
all this shows is that if S is a normal system that admits the rule of 
disjunction and lacks the theorem o p  I) p, and an operator 0 satisfies 
all and only the principles of the Solovay extension S+, then 0 and O+ 
are coextensive operators that satisfy different principles. Many normal 
systems do admit the rule of disjunction and lack the theorem u p  I) p, 
e.g. K, KD, K4, KD4 and GL itself. Thus Solovay extensions provide 
numerous examples of the phenomenon with which this paper is con- 
cerned. Examination of the proof shows that the remarks in the text can 
be generalized from the case in which S is normal to the case in which it 
is a congruential system with the theorem OT (thus S admits the rule of 
necessitation, but O(p 3 q) I) (up I) oq) need not be a theorem). For 
more on the rule of disjunction see Hughes and Cresswell 1984. 

In the case of GL and GLS, it is not surprising that ua should be a 
theorem of GLS only if a (and therefore oa) is already a theorem of 
GL. For GLS states what is true about provability in PA (U), while GL 
states what is provable in PA about provability in PA. Lf the result of 
replacing the propositional variables in ua by sentences of LpA is 
always true, then the result of so replacing them in a is always 
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provable. Subtler issues arise over the interpretation of Proposition 10 
for GL and GLS when n>l.  If oa v OB is always true, it is less trivial 
that either a is always provable in PA or p is. 

An example of a system that does not admit the rule of disjunction 
and in which things go very differently is K5, the smallest normal 
system containing - u p  I> U-up. Since O ( 0 p  ~ p )  is a theorem of 
K5, the Solovay extension of K5 is S5, whose normality means that 
any corresponding operators 0 and O+ satisfy the same principles. In 
contrast, if the system S admits the rule of disjunction, then any normal 
subsystem of the Solovay extension S+ of S is a subsystem of S, for if a 
is a theorem of a normal subsystem of S+, then oa is too, so a is a 
theorem of S (Appendix, Proposition 10 for n=l). 

5. Introspection and ‘actually’ operators 

The following are sometimes described as principles of introspection: 

4 up 3 u o p  
5 - 0 p  3 U-up 

Such a description is given when 0 is interpreted as a knowledge or 
belief operator. On such an interpretation, 4 and 5 claim that if one 
knows something, one knows that one knows it, and that if one does not 
know it, one knows that one does not know it, or that if one believes 
something, one believes that one believes it, and that if one fails to 
believe something, one believes that one fails to believe it. Really, the 
term ‘introspection’ is more naturally associated with the bimodal 
claims that if one believes something, one knows that one believes it, 
and that if one fails to believe it, one knows that one fails to believe it, 
for introspection is supposed to be a faculty of inner perception by 
which one comes to know one’s internal mental states. The present 
concern, however, is not with the nature of introspection, nor with the 
sorts of idealization that would be needed to make 4 or 5 plausible for 
knowledge or belief (considered as an empirical generalization about 
ordinary subjects, each of the preceding epistemic and doxastic claims 
is false). A simple creature that has knowledge and beliefs but lacks the 
concepts of knowledge and belief would constitute a counter-example 
to both 4 and 5 on both the epistemic and doxastic interpretations. The 
argument of Davidson 1984, p. 170, to the effect that no creature can 
have beliefs without having the concept of belief seems to exploit an 
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equivocation between de re and de dicto readings of ‘understands the 
possibility of being mistaken’. If one believes that P, one must under- 
stand what it would be for it not to be the case that P, which is the 
condition for one’s belief to be false; but to assume that one must grasp 
it as the condition for one’s belief to be false is to beg the question. 

The question is rather: when is a given operator coextensive with 
one that satisfies 4 or 5? Such an operator need not be epistemic or 
doxastic: consider Salmon’s treatment of necessity and actual necessity, 
discussed in Example 4. Answers to that question may help to explain 
the deceptive appeal of 4 and 5 in some cases, but the aim of this section 
is mainly to clarify the formal position. 

Not every operator is coextensive with an operator that satisfies 4 
and 5. For example, if negation were coextensive with an operator 0 
that satisfied 4, then, at any index, since --I is true, 01 would be true 
(by coextensiveness), so 001 would be true (by 4), so -01 would be 
true (by coextensiveness), so 01 would be false, so --I would be false 
(by coextensiveness yet again), which is impossible. Similarly, if nega- 
tion were coextensive with an operator 0 that satisfied 5, then, at any 
index, OT would be false (by coextensiveness), so 0-OT would be true 
(by 5) ,  so --OT would be true (by coextensiveness), so OT would be 
true, which is a contradiction. Thus negation is not coextensive with any 
operator 0 that satisfies either 4 or 5. 

Nevertheless, the treatment of the relation between necessity and 
actual necessity in Example 4 suggested that under fairly general 
conditions a given operator is coextensive with an operator that satisfies 
both 4 and 5. Such conditions will now be identified. An obvious 
strategy is to introduce something like an ‘actually’ operator while 
assuming as little about the background as possible. 

Given an operator 0 in a language L, L itself will often contain no 
operator coextensive with 0 that satisfies 4 and 5. The obvious question 
is whether L can be extended to a language that does contain an 
operator coextensive with 0 that satisfies 4 and 5. But it may be unclear 
whether 0 in the extended language retains the meaning that it had in 
the original language, for it applies to sentences of the extended lan- 
guage that are not in the original language. In what follows, a sentence 
of the original language turns out to be true at an index in the extended 
language if and only if it is true at that index in the original language; 
moreover, 0 turns out to satisfy exactly the same principles with respect 
to the extended language as it did with respect to the original language. 
It is left to the reader to judge whether 0 retains its original meaning. 
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For simplicity, consider a language LO made up of atomic sentences, 
the truth-functional operators I and 3 and the operator 0. The argu- 
ments below can be generalized to languages with a more extensive 
vocabulary. Extend Lo to a language Lo@ by adding the singulary 
operator @. For each index i, define a mapping @z from Lo@ to Lo 
inductively as follows: 

Q1q = q (q atomic) 
Q 1 I  =I 
@t(a =I P) = @la = @ t P  

@[oa = O@,a 
@[@a = T if @a is true at i in Lo 
@l@a = I otherwise 

For any a ~ L o @  and index i, let a be true at i in LOO just in case @[a is 
true at i in Lo. Since I and 2 have their usual truth-tables in Lo and $i 

commutes with them for each i ,  they have their usual truth-tables in 
Lo@. If a ~ L o ,  then @[a = a, so a is true at i in Lo@ if and only if a is 
true at i in Lo. Thus the new clauses for truth do not remove any 
counter-examples to principles that 0 did not satisfy with respect to 
the original language. It is not hard to show that for any principle a~ L, 
0 satisfies a with respect to Lo@ if and only if it satisfies it with respect 
to Lo. For let * be a O-translation into Lo; thus * is also a O-translation 
into Lo@. Moreover, if  EL^ then, for any index i, ql*a = *a, so *a is 
true at i in Lo@ if and only if *a is true at i in Lo. Thus if 0 satisfies a 
with respect to Lo@, it satisfies it with respect to Lo. Conversely, let *. 
be a O-translation into Lo@, and i an index. Let *[ be the O-translation 
into Lo such that * r p  = Qt*p for each propositional variable p .  By a 
routine induction on the complexity of  EL^, *[a = Q1*a. Hence *a is 
true at i in Lo@ if and only if *[a is true at i in Lo. Thus if 0 satisfies a 
with respect to Lo, it satisfies it with respect to Lo@. 

Thus the expansion of the language does not introduce any counter- 
examples to principles that 0 did satisfy with respect to the original 
language. Henceforth, truth at an index and satisfaction of a principle 
will be in and with respect to Lo@ unless otherwise specified. 

Given this account of @, it should be stressed that in most cases the 
analogy between @ and ‘actually’ is no more than an analogy. If the 
operators ‘It is known that’ and ‘It is believed that’ do not satisfy 4 or 5, 
no more do the operators ‘It is actually known that’ and ‘It is actually 
believed that’. There is no obvious general way of rendering 0 in 
English. Nevertheless, truth-conditions are as well-defined for 
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sentences of Lo@ as for sentences of Lo. @ can be interpreted as 
mapping all true propositions to one tautologous proposition and all 
false propositions to one self-contradictory proposition. It might be 
objected that the proposition expressed by a will then not in general 
be a constituent of the proposition expressed by @a. But that is an 
inessential feature of the construction. @@a could just as well have 
been defined as the tautology &a 3 q$a if &a is true at i in Lo and as 
the contradiction ka & -&a otherwise, in which case the proposition 
expressed by a would be a constituent of the proposition expressed by 
@a. 

The construction has some unusual features. For concreteness, write 
0 . . . as ‘John knows that’ and T as ‘If it is raining then it is raining’; 
for simplicity, suppress the index i. Suppose that there is in fact 
intelligent extraterrestrial life, but that John is wholly ignorant as to 
whether there is intelligent extraterrestrial life, although he does know 
the tautology that if it is raining then it is raining. Thus $I maps the 
sentence ‘@ there is intelligent extraterrestrial life’ of Lo@ to the 
sentence ‘If it is raining then it is raining’ of Lo. Consequently, @ 
maps the sentence ‘John knows that @ there is intelligent extraterres- 
trial life’ of Lo@ to the sentence ‘John knows that if it is raining then it 
is raining’ of Lo; since the latter sentence is true, so too is the former. 
Nevertheless, if one asks John the question ‘Is it the case that @ there is 
intelligent extraterrestrial life?’ he will have to shrug his shoulders, 
even though he knows the semantic rules of the language (e.g. the 
definition of @) and desires to be helpful. Since he does in fact know 
that @ there is intelligent extraterrestrial life (i.e. he knows the truth 
expressed by the sentence), it would be inaccurate of him to answer ‘I 
don’t know’. His problem is presumably that he fails to know which 
proposition is expressed by the sentence ‘ @ there is intelligent extra- 
terrestrial life’. That ignorance is not due to ignorance of its linguistic 
meaning, for he knows the relevant semantic rules; what he does not 
know is which proposition those rules assign to the sentence, for that 
depends on non-semantic facts of which he is ignorant. One might 
compare him to someone who knows the linguistic meaning of ‘That 
spider is poisonous’ but cannot identify the spider which the speaker is 
pointing at, except that John’s predicament is likely to be the rule, not 
the exception, for speakers of Lo@. The language has grave practical 
disadvantages. Nevertheless, one can put these doubts to one side and 
use L0@ to explore the phenomenon of coextensive operators that differ 
in satisfaction of the principles 4 and 5 .  
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For any a~ Lo@ and index i ,  @a is true at i if and only if a is true at 
i .  In particular, @Oa and Oa are true at the same indices, so @O and 0 
are coextensive operators. For @a is true at i if and only if qi@a is true 
at i in Lo, which is so if and only if @i@a is T, which is so if and only if 
@ia is true at i in Lo, which is so if and only if a is true at i .  It follows 
immediately that for all a ~ L o @ ,  the sentence @a E a is true at all 
indices, so for all a , p ~ L ~ @  each of @(a 3 p) 3 (@a I> @p), 
@-a = -@a and @a 3 @@a is true at all indices. It also follows 
that if a is true at all indices so too is @a (compare the axioms and 
rules of the systems KT@ and KT@S in Example 4 that do not involve 
0). If @ is read as ‘actually’ within the framework of possible worlds 
semantics, the fact that @a and a are true at the same indices means 
that indices are functioning more like contexts of utterance than like 
contexts of evaluation. However, the construction of Lo@ out of Lo, 
with the semantics for @ in terms of the mappings Qi, does not rest on 
any special assumptions about the operator 0. 

It must now be checked that the composite operator @O satisfies the 
principles 4 and 5. More generally, @O will be shown to satisfy any 
monomodal principle of the form a 3 oa, where a is fully modalized, 
in the sense that propositional variables occur in a only inside the scope 
of 0.4 and 5 are themselves of this form, and all principles of this form 
are theorems of K45, the smallest normal system containing 4 and 5. 
Since not every operator is coextensive with an operator that satisfies 4 
and 5,  some assumption will be needed about the operator 0. It is 
enough to assume that whenever a ~ L o  is a truth-functional tautology, 
O a  is true at every index. This is a considerable weakening of the rule 
of necessitation (UT must be a theorem but OUT need not be). Now let 
 EL^ be fully modalized, and * an @O-translation into Lo@. By 
definition of @i and the fact that a is fully modalized, Qi*a is either a 
tautology or a contradiction. Thus if *a is true at an index i, then ei*a is 
true at i in Lo, so @*a is a tautology, so Oqi*a = #iO*a is true at i in 
Lo, so @i*Ua = @i@O*a = T, so *oa is true at i .  Thus *(a 3 oa) is 
true at every index for every @O-translation *, so 00 satisfies the 
principle a 3 Da, for any fully modalized a. In particular, @O satisfies 
4 and 5. By similar reasoning, the pair of operators <O,@> satisfies the 
bimodal principle mp 3 0.p (compare the axiom @ p  3 o @ p  of the 
system KT@ in Example 4). 

If a is fully modalized, then so too is the formula a 3 na. By the 
reasoning above, 00 also satisfies the principle (a 3 oa) 3 
O ( a  I> oa), and therefore the principle o(a I> oa). By iteration af 
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the argument, 00 satisfies n"(a 3 Oa) ,  the n-fold necessitation of 
a 3 ua, for each n. In particular @O satisfies all necessitations of 4 
and 5. Similarly, if a is a truth-functional tautology, @O satisfies una 
for each n. If 0 satisfies the principle o ( p  3 q) 3 (up 3 aq) ,  the K 
axiom, so too does @O, because it is coextensive with 0 and the 
principle is first-degree; and since the K axiom is fully modalized, 
@O also satisfies C!"(O(p 3 q) 3 (up  13r oq)) for each n. It follows 
that in this case @O satisfies every principle in the system K45, which 
can be axiomatized by those necessitations, with MP as the only pri- 
mitive rule of inference (necessitation becomes a derived rule). 

One corollary of what has just been shown is that if S is any normal 
modal system, then StK45 conservatively 0-extends S. For, as noted in 
$3, there is an operator 0 that satisfies all and only the principles in S .  
By the preceding construction, the pair <O,@O> satisfies all principles 
in StK45 (since S is normal), and the only principles in L, it satisfies 
are in S, so StK45 conservatively 0-extends S. StK45 conservatively 
m-extends K45 only if all the first-degree theorems of S are also 
theorems of K45. 

It can be shown that for any normal modal system S, there is exactly 
one extension S' of K45 such that StS' conservatively 0-extends S and 
conservatively .-extends S'. There is at least one, for if S is the system 
of principles satisfied by an operator 0 and S' by @O, the system 
satisfied by the pair <0, @O> both extends S t  S' and conservatively 
a-extends S and conservatively .-extends S', which extends K45. S' is 
unique, for any system with the required properties is the smallest 
extension of K45 containing all first-degree theorems of S (by Proposi- 
tion 9 of the Appendix; as a corollary, if all the first-degree theorems of 
S are also theorems of K45, then StK45 conservatively .-extends 
K45). Thus the system of principles satisfied by 00 is the smallest 
extension of K45 containing all first-degree principles satisfied by 0, 
provided that the system of principles satisfied by 0 is normal. 

It follows that if S1 and S2 are normal systems with the same first- 
degree theorems, and s' is the smallest extension of K45 containing 
those theorems, and S Q '  and SzcS',  then SltSz conservatively 0- 
extends S1 and conservatively .-extends Sz. For by what has just been 
noted, SITS' conservatively 0-extends Sl; since SzsS',  s11.s~ con- 
servatively a-extends SI. By parallel reasoning, SITS2 conservatively 
m-extends S 2  (compare Proposition 8 of the Appendix). This result 
means that over a wide range of cases, for SI and Sz to have the same 
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first-degree theorems is necessary and sufficient for SITS2 to be a 
conservative extension. 

Some remarks on the operator @ may be useful. Without any 
assumptions about the operator 0, one can show that @ is eliminable 
from Lo@, in the sense that for any a~ LOG there is some PE LO such 
that a = p is true at all indices. Moreover, @ can be eliminated in a 
uniform way: for any a€Lo. there is some ~ G L ,  such that the pair 
CO,@> satisfies the principle a = p. To prove this, it is useful to define 
the result of substituting y for m6 throughout a~ La., [y6]a, as follows 
(a rigorous definition is needed because one substitution may create 
new occurrences of ~ 6 ) :  

[y6] p = p ( p  a propositional variable) 
[y631 = I 
[T61 (a 3 PI = [y:61a 3 [YSIP 
[y6]oa = o[y6]a 
[y6]ma = y if a = 6 
[y6]ma = M[y6]a otherwise 

By induction on the complexity of a, for any 0,@-translation *, if *6 
is true at an index i then qi*[-r:6]a = Qi*a, so *[-r:6]a is true at i iff 
*a is true at i .  Similarly, if *6 is false at i ,  then *[1:6]a is true at i iff 
*a is true at i .  Thus the pair CO,@> satisfies the principle 

a = ((6 3 [-r:6]a) & (-6 3 [1:6]a)) 
If m6 occurs in a, then each of 6, [ ~ : 6 ] a  and [1:6]a has fewer 
occurrences of than a. By iteration of the argument, CO,@> satisfies 
a principle a = p such that does not occur in p. 

This result means that the bimodal system So@ of principles in La 
satisfied by CO, @> maximally conservatively o-extends the monomo- 
dal system So of principles in L, satisfied by 0, in the sense that no 
proper extension of So@ in L, conservatively o-extends So. For let the 
extension S of So@ in L,. conservatively o-extend So, and a be a 
theorem of S. For some PE Lo, a = p is a theorem of SO@, and therefore 
of S (which extends So@), so p is a theorem of S, and therefore of So 
(which is conservatively 0-extended by S), and therefore of SO@, so a 
is a theorem of SO@. Thus S is SO@. Indeed, similar reasoning shows 
that SO@ is simply the bimodal extension of So by the biconditionals 
a = ((6 I> [-r:6]a) & (-6 3 [-r:6]a)) used in the proof above. Since 
those biconditionals should be satisfied by CO,@> if @ is to stand to 
0 as ‘actually’ stands to ‘necessarily’, SO@ is the only system that both 
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conservatively 0-extends SO and contains the intuitively desirable 
biconditionals. These remarks might be regarded as an informal argu- 
ment for the soundness and completeness of So@ relative to its intended 
interpretation in some contexts. 

As Hazen (1978) has pointed out in a similar connection, the elim- 
inability of @ is peculiar to propositional logic (he establishes elimin- 
ability for one such system). The very point of introducing an ‘actually’ 
operator is that it is ineliminable in the context of first-order quantifica- 
tional logic (consider ‘It could have happened that everyone who 
actually voted for the motion voted against it’). The definition of 
&@a does not generalize in a suitable way to the case in which a 
has free variables. Of course, quantified modal logic can be used to code 
the quantified principles that operators satisfy, in a generalization of the 
approach of $2, but such a generalization lies outside the scope of this 
paper. Moreover, the case of provability logic shows that the system of 
quantified principles that an operator satisfies may be unmanageably 
complex, even though the system of propositional principles that it 
satisfies is attractively simple (Boolos 1993, pp. 219-255). 

Suppose now that the operator 0 satisfies the principles of the 
normal system S. One disadvantage of the ‘actually’ construction is 
that, although the pair cO,@O> satisfies the principles of StK45, it 
need not satisfy the principles of the stronger composite SSK45. In 
particular, suppose that 0 satisfies the T principle up =I p but does not 
already satisfy the 4 principle O p  =I mop.  For some 0-translation * into 
Lo and index i, O*p is true and OO*p false at i. Extend * to a 
0,@O-translation *‘. But mp =I p is a theorem of SSK45 (indeed, of 
STK), so on(wp 3 p) is also a theorem of SSK45 (although not of 
StK45). Now *’OO(Bp =I p) = OO(@O*p =I *p);  since *peL0, Oi*p = 
*p, so kO*p = O*p, which is true at i, so Qi@0*p = T, so 
@iOO(@O*p =I *p)  = OO(T I> *p) ,  which is false at i, for it is true at 
the same indices as OO*p (since S is normal); hence OO(@O*p =I * p )  
is false at i. Thus the pair cO,@O> does not satisfy the principle 
oo(mp 3 p). But this does not imply that SSK45 does not conserva- 
tively n-extend S, i.e. that no operator 0 satisfying exactly the princi- 
ples of S can be coextensive with an operator 0’ such that the pair 
cO,O‘> satisfies the principles of SSK45. In many such cases, SSK45 
does conservatively 0-extend S: for example, when S is KT. It is just 
that, to establish such results, 0’ must be chosen to be something other 
than @O. 

A semantic method is now convenient. It is somewhat less general, 
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however, than the syntactic method used to introduce 0. The relevant 
proof in the Appendix applies only to complete (and therefore normal) 
modal systems, i.e. to those consisting of all formulas valid in all 
models based on a given class of frames. The normal systems that arise 
in practice are complete, but some non-normal systems are of interest in 
connection with epistemic or doxastic applications (ordinary subjects 
do not know or believe everything that follows from what they know or 
believe). At any rate, let S be a complete system. Then it can be shown 
that S$K45 conservatively o-extends S. Moreover, if S’ is the smallest 
extension of K45 by all first-degree theorems of S, then S$S’ con- 
servatively 0-extends S and conservatively . -extends S ’ (Appendix, 
Proposition 7). 

To illustrate the scope of these results, let S1 and S2 be any complete 
systems such that KTcSlcS5 and KTcS2cS5. Now the smallest 
extension of K45 by all first-degree theorems of SI includes S5,  for 
the T axiom is a first-degree theorem of SI, since KTcS1. Conversely, 
S5 includes the smallest extension of K45 by all first-degree theorems 
of SI, all of which are theorems of S5, since SlcS5.  Thus the smallest 
extension of K45 by all first-degree theorems of S1 is exactly S5. Thus 
S1$S5 conservatively o-extends S1. Since S 2 c S 5 ,  S1$S2 conservatively 
a-extends SI. Similarly, S1$S2 conservatively .-extends S2. Thus 
S1*S2 is a conservative extension. By similar arguments, one can 
show that if S1 and S 2  are complete and either KDcslcKD45 and 
KDcSzcKD45 or KcSlcK45 and KcS2cK45 then S1$S2 is a con- 
servative extension. Many other results can be proved along these lines. 
They cover a wide range of the normal systems of most interest. 

Many operators that satisfy neither 4 nor 5 are coextensive with 
operators that satisfy both 4 and 5. By the same token, many operators 
that satisfy both 4 and 5 are coextensive with operators that satisfy 
neither 4 nor 5. In such cases, it is impossible to decide whether an 
operator satisfies one of those principles on the basis of arguments that 
do not discriminate between coextensive operators. For instance, some 
kinds of functional consideration about propositional attitudes are 
insensitive to differences between coextensive operators. Take as an 
example the principle ‘When one desires that P and one believes that if 
one does A then P, one usually does A’; if it holds at all, it holds 
whenever operators coextensive with ‘one desires that’ and ‘one 
believes that’ respectively are substituted for them. It is therefore 
impossible to determine on the basis of such considerations whether, 
if one believes something, one also believes that one believes it. An 
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adequate account of the operators ‘x believes that’ and ‘x desires that’ 
must be based on considerations fine-grained enough to discriminate 
between them and operators merely coextensive with them. 

Note: Earlier versions of this material were presented at Oriel College Oxford, 
the University of Canterbury (Christchurch), Monash University and the University 
of Edinburgh. I thank the audiences there and at the British Academy Symposium, 
and in particular Dorothy Edgington, for their constructive comments. At an earlier 
stage, George Boolos, Max Cresswell, Kit Fine and Lloyd Humberstone asked 
fruitful technical questions. 

Appendix 

This appendix collects the longer proofs needed for the paper. 
Notation: LPc is the language of the non-modal propositional cal- 

culus. As usual, a substitution from L to L’ is a mapping from formulas 
to formulas of L’ that commutes with all operators in L (thus all 
operators in L must also be in L’). The smallest modal system is K. 

PROPOSITION 1. The smallest normal modal system containing 
001 has the same first-degree theorems as K; so has the smallest 
normal modal system containing ( p  & U-p)  I> 001. 
PROOF. Let S be the smallest normal modal system containing OOL, 
and S‘ the smallest normal modal system containing ( p  & 0 - p )  E 001. 
Define two functions Q and y~ from L, to L, thus: 

QP = WP = P 
QL = W 1  = I 

= P) = Qa 3 QP vv(a 2 PI  = va 3 WP 
Qoa = T yma= O N  

Axiomatize S with all truth-functional tautologies and all formulas of 
the form o(a I> P) 2 (oa 3 OB) and 001 as the axioms and MP and 
necessitation as the rules of inference. By induction on the length of 
proofs, if ks a then I-, @ and va. Now if a is first-degree, ~a = a, 
so any first-degree theorem of S is a theorem of K; since S extends K, S 
and K have the same first-degree theorems. Since K c S ’ c S ,  S and S’ 
have the same first-degree theorems. 

An alternative proof of the same result would use Proposition 6 and 
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the fact that K is the logic of the class of irreflexive frames and S the 
logic of the class of frames cW,R> satisfying the condition that if wRx 
then not xRy to show that KSS conservatively U-extends K and con- 
servatively .-extends S. 

PROPOSITION 2. 
PROOF. Define three functions 4, w and x from L,, to LO thus: 

UUUT is not a theorem of KTK. 

4P = WP = XP = P 
($1 = y J 1  = X I  = I 

@(a = P> = 4a = 4P v(a = P> = Wa = yJP x(a 3 P> = Xa 3 xp 
@ a = 1  yIa=oyla Xoa=oqfa 
@a=o@ yaa=o@ X.a=uyJa 

KcLo, but axiomatize KOcL,, with all truth-functional tautologies 
and all formulas of the form U(a I> P) 3 (oa 2 ob) as the axioms and 
MP and necessitation for 0 as the rules of inference. By induction on 
the length of proofs, if k~~ a then t K  yJa and kK ~ a .  Similarly, axio- 
matize K. in L, with all truth-functional tautologies and all formulas 
of the form .(a 2 P) 2 (.a 3 WP) as the axioms and MP and neces- 
sitation for as the rules of inference. By induction on the length of 
proofs, if FK. a then t - ~  $a, IK and kK ~ a .  Now axiomatize KTK 
with all theorems of KO and K. and formulas of the form oa .a as 
axioms and MP as the only rule of inference. By the previous results 
and induction on the length of proofs in KJ-K, if kK+K a then kK ~ a .  But 
XUWUT = O W O T  = UU@T = 001, and not t-K 001. 

If X is a formula or set of formulas, let IX be the result of inter- 
changing U and throughout X. 

PROPOSITION 3. Let S1,S2cLo be modal systems, wlcL, a max- 
imal S1-consistent set and w2cL0 a maximal S2-consistent set such that 
wlnLpc = w2nLpc. Then w1uIw2 is an S1~S2-consistent set. 
PROOF. Define mappings 41 and 42  from L,, to L, thus: 

41P = 42P = P 
411 = $21 = I 

41(a 2 PI = 41a 3 41P 

41.a = T if ~ 7 4 ~ a ~ w ~  42.a = o&a 

42(a = P> = 42a 3 42P 
410a = O&a 42ua = T if ~ @ ~ a ~ w ~  

@*ua = I otherwise 

$lma = I otherwise 
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Now define a mapping U, from La, to Lpc thus: 
WP = P 
WA. = I 

U,(a3P> = va=vP 
yma = $20a 

yma = q1.a 

Set U = {a€ Lam: yfae wl }. The plan is to show that U is an S10S2- 
consistent set such that wlulw2cU. 

(i) U = { a~ Lo: ~ , a e  w2}. Proof U , ~ E  LK and wlnLpc = w2nLpc. 
(ii) For aeLo, a € U  if and only if $ laewl .  Proof By induction 

(iii) For EL-, a e U  if and only if $ 2 a ~ w 2 .  Proof By induction 

(iv) wlcU. Proof For aewlcLo,  &a = a; use (ii). 
(v) Iw2cU. Proof For a€ Iw2cL., $2a = la; use (iii) and the fact 

that a~ Iw2 if and only if la€ w2. 

(vi) If ae Lo and o is a substitution from Lo to Lm, then $lea is a 
substitution instance of a. Proof Let of be the substitution such that 
o'p = $ lop  for every propositional variable p. By induction on the 
complexity of aeL0, o'a = $1oa. 

(vii) If a~ LO and o is a substitution from L. to Loll, then $201a is a 
substitution instance of a. Proof Like that of (vi). 

(viii) If ae S1 and o is a substitution from Lo to Lo, then oae U. 
Proof Since S1cLo, Q1oa is a substitution instance of 01 by (vi). Since 
acS1 and S1 is closed under US, $loa~S1.  Since w 1  is maximal SI- 
consistent, $ l o a ~  w1. By (ii), oae U. 

(ix) If ae S2 and o is a substitution from L, to k, then olae U. 
Proof Like that of (viii), using (iii) and (vii). 

(x) U is S1OS2-consistent. Proof Since w 1  is PC-consistent, U is 
closed under MP and does not contain I; then use (viii) and (ix). 

(xi) w1uIw2 is S1OSz-consistent. Proof By (iv), (v) and (x). 

on the complexity of a. 

on the complexity of a and (i). 

PROPOSITION 4. If S l r S 2 d o  are consistent modal systems, then 
S 1 8 S 2  conservatively 0-extends S and conservatively .-extends S2. 
PROOF. Suppose that aeLo but aeS1. Let wlcLo be a maximal SI- 
consistent set such that -a€ wl. Since S2 is a consistent modal system, 
wlnLK is S2-consistent. Let w2cL0 be a maximal S2-consistent exten- 
sion of wlnLpc. By Proposition 3, wlulw2 is S10S2-consistent. Since 
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-a€ wl, a& S1OS2. Thus 
ond half is similar. 

conservatively U-extends S1. The sec- 

PROPOSITION 5. If S1 is the logic of a class of frames r, and for 
each <W],RI>E r and WE W1 there is a frame <W2,R2> for the system 
S2 such that W E W ~  and (xEW1: wRlx} = { X E W ~ :  wR2x}, then 
conservatively U-extends SI. 
PROOF. Suppose that  EL^ and not ksl a. We show that not 
t-s1$s2 a. Since SI is the logic of r, there are <W1,Rl>E r, WE W1 and a 
model <W1,RI,V> based on <W1,R1> such that V(a,w) = 0. By hypoth- 
esis, there is a frame <W2,R2> for S2 such that W E W ~  and 
{xEW1: wRlx} = { x E W ~ :  wR~x} .  Extend R1 and R2 to relations RI+ 
and R2+ on WluW2 thus: 

xRl+y just in case either (a) xRly 
or (b) xeWl and x = y and RI is 

serial on W1. 
xR2+y just in case either (a) xR2y 

or (b) XE W2 and x=y and R2 is serial 

Define a bimodal model <W1uW2,R1+,R2+,V+> based on the frame 
< W l u  W2,R1+,R2+> by putting V+( p,x)=V( p , x )  for XE W1 and 
V+(p,x)=O for xE W1, for each propositional variable p .  Now note the 
following facts: 

(i) < W ~ U W ~ , R ~ + >  is a frame for S1. Proof If xEW1, then the 
subframe of < W ~ U W ~ , R ~ + >  generated by x is the subframe of < W I , R p  
generated by x; since <W1,R1> is a frame for S1, so is the latter. If 
x e W l  and R1 is serial, then the subframe of <W1uW2,RI+> generated 
by x is <{x},{cx,x>}>; but since R1 is serial, this is a p-morphic image 
of any generated subframe of <WI,R1>, and so is again a frame for SI. 
If xEW1 and RI is not serial, then the subframe of <W1uW2,R1+> 
generated by x is < { x } , { } > ;  but since R1 is not serial, <W1,R1> has a 
generated subframe of the form <(y},{ }>, so <{x},{ }> is a frame for SI. 
Thus every generated subframe of <W1uW2,R1+> is a frame for SI, SO 

<W1W2,R1+> itself is a frame for S1. 
(ii) <WIUW~,R~+> is a frame for S2. Proof As for (i). 
(iii) <W~UW~,RI+ ,R~+> is a frame for S1@S2. Proof Routine 

from (i) and (ii). The attempt to dispense with the completeness 
assumption by arguing in terms of models rather than frames would 

on W2. 
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break down because there would be no guarantee that substitution 
instances in L,, of theorems of S1 or S2 would be true in the new model. 

(iv) If <W1uW2,R1+,R2+,V‘> is a model based on the frame 
< W ~ U W ~ , R ~ + , R ~ + >  and PEL~.,  then V’(oP = @,w) = 1. Proof 
{XE W ~ U W ~ :  wRl+x} = {XE W1: WRlX} = {XE W2: w R ~ x }  = 
{XE W ~ U W ~ :  wR~+x} .  

(v) If <W1uW2,R1+,R2+,Vf> is a model based on the frame 
< W ~ U W ~ , R ~ + , R ~ + >  and kslSs2 p, then V’(p,w)=l. Proof Routine 
from (iii) and (iv). 

(vi) V’(a,w)=O. Proof: The subframe of < W l u  W2,R1+> generated 
by w is the subframe of <W1,R1> generated by w and V’( p,x)=V( p , ~ )  
for XE W1. Thus, since aeLo, V+(a,w)=V(a,w)=O. 

(vii) Not kslPs2 a. Proof From (v) and (vi). 

PROPOSITION 6. Suppose that S1 is the logic of a class of frames rl, 
S2 is the logic of a class of frames r2, for each <Wl,R1>E rl and WE W1 
there is a < W ~ , R ~ > E  l-2 such that WE W2 and {XE W1: wRlx} = {XE W2: 
wR2x}, and for each <W2,R2>cr2 and w€W2 there is a <W1,R1>Erl 
such that w ~ W 1  and (xEW1: wRlx} = { X E W ~ :  wR2x}. Then &SS2 
conservatively 0-extends S 1 and conservatively .-extends S2. 
PROOF. That S 1$S2 conservatively U-extends S1 follows from Proposi- 
tion 5. That it conservatively .-extends S2 is shown by an argument 
parallel to the proof of Proposition 5. 

PROPOSITION 7. Let S be a complete system, and S‘ the smallest 
extension of K45 containing all first-degree theorems of S. Then SSS’ 
conservatively 0-extends S and conservatively .-extends S ’ (as does 

PROOF. Let S be the logic of a class of frames r, <W,R>E r and WE W. 
Set W, = {w} U {x: wRx} and define R, on W, by: 

StS’). 

xR,y just in case WRY. 

Let S’ be the smallest extension of K45 containing all first-degree 
theorems of S. 

(i) K45 is valid on <W,,R,>. Proof R, is obviously transitive and 
euclidean. 

(ii) If  EL, is first-degree and ks a, then a is valid on <W,,R,>. 
Proof Let <W,,R,,V,> be a model based on <W,,R,>, and fix XE W,. 
Define a mapping 7c from W, to W, thus: 
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m = x  
m = w if wRw 
m = x if not wRw 
ny = y i f y  # wandy  =kx 

Let <W,R,V> be a model based on <W,R> such that V( p,y) = V,( p,ny) 
for each YEW, and propositional variable p. Thus if p is n-free, then 
V(p,y) = V,(p,ny). Since the restriction of n to {y: WRY} (={y: 
nwR,y}) is a permutation, V(op,w) = V,(op,nw) = V,(op,x) for 0- 
free p. Thus if p is first-degree, then V(p,w) = V,(p,x). By hypothesis, 
a is first-degree, FS a and <W,R> is a frame for S, so V(a,w) = 1. Thus 
V,(a,x) = 1. Since x and V, were arbitrary, a is valid on <W,,R,>. 

(iii) <W,,R,> is a frame for S’. Proof From (i) and (ii). 
(iv) SSS’ conservatively 0-extends S. Proof By (iii), for each 

<W,R>Er and WEW there is a frame <W,,R,> for S’ such that 
WEW, and {xEW: wRx} = {xEW,: wR,,,x}. By Proposition 5, SSS’ 
conservatively 0-extends S. 

(v) For each aeLo  there is a first-degree formula la such that 

oa, v Op v y) = (oal v . . . oa, v Op v 07) (m 2 0). By standard 
manipulations, one can then show that any formula of degree >1 is 
equivalent in K45 to a formula of lower degree. 

SSS’ conservatively .-extends S’. Proof Suppose that aeL, 
and ksZsf la. What must be shown is that l-st a. By (v), l-K45 a = la, SO 

ksr  a la, so kssst la = Ila, so kssst Ila. Since Ila is first-degree in ., ksssf la Ila, so ksss# la. Since l a ~ L , ,  ks la by (iv). Since la is 
first-degree, ks! la. Since l-st a = la, FS$ a. 

k ~ 4 5  a E la. Proof It iS not hard to show that kK45 n(Oa1 V . . . 

(vi) 

PROPOSITION 8. Let S1 and S2 be complete systems with the same 
first-degree theorems, and S ’ the smallest extension of K45 containing 
those theorems. If S l c S ’  and S,cS’ then SlSS2 conservatively 14 
extends S1 and conservatively .-extends S2 (as does S,tS2). 
PROOF. By Proposition 7, SISS’ conservatively 0-extends SI. Since 
S2cS’, S1/S2 conservatively 0-extends SI. By parallel reasoning, 
conservatively .-extends S2. 

PROPOSITION 9. Let S and S’ be systems such that S‘ extends K45 
and StS’ (or SSS’) conservatively n-extends S and conservatively .- 
extends S’. Then S’ is the smallest extension of K45 containing all first- 
degree theorems of S. 
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PROOF. Suppose that FS a and a is first-degree. Then Fs+.st a and 
FStS‘ 01 - = la, so Fstst la. Since SfS’ conservatively w-extends S’, 
kst a. Thus S’ is an extension of K45 containing all first-degree theo- 
rems of S. Let S” be any extension of K45 containing all first-degree 
theorems of S. What must be shown is that S’cS’’. Suppose that Fst a. 
By reasoning as for (vi) in the proof of Proposition 7, Fstst la. Since 
1acLL, and StS‘ conservatively 0-extends S, C-, la. Since la is first- 
degree, Est! la. Since s’’ extends K45, FS” a = la, so Fs~! a, as required. 
Thus S’ is the smallest extension of K45 containing all first-degree 
theorems of S. 

PROPOSITION 10. If the system S admits the rule of disjunction, and 
ual v . . . v 0% is a theorem of the Solovay extension of S, then 
kS a, for some m (1 I m l n ) .  
PROOF. Grant the hypothesis of the proposition. Then for some 
P I ,  * a, Pk: 

F S  [(UP1 1 p1> &z . . . &z ( O P k  3 Pk)l  3 [oal v . . . v oa,] 
Assume without loss of generality that k is the least number for which S 
has such a theorem. By propositional logic: 

Since S admits the rule of disjunction, either I-, P, or Fs a, for some 
m. If the former, then Fs ob, 3 P,, so that conjunct was redundant, so 
k was not minimal, contrary to hypothesis. 
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