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COMMENTARY 

On Motivating Higher-Order Logic 

DAVID BOSTOCK 

PROFESSOR HIGGINBOTHAM ASKS whether higher-order logic may be 
adequately motivated by the properties of natural languages, and he 
concludes that it cannot. I have no quarrel with this conclusion, but that 
is because I think he is looking in the wrong place for a suitable 
‘motivation’, and that that in turn is because he has a mistaken con- 
ception of what is distinctive about higher-order logic. To make this 
point as straightforwardly as possible, I shall begin by concentrating 
just on second-order logic, and in fact on just that fragment of it that 
Higginbotham himself gives most attention to. Later, I shall briefly 
sketch the wider picture. 

1. What is second-order logic? 

It is natural to begin by contrasting the standard vocabulary of first- 
order and second-order logic, as they are usually conceived. I would put 
it in this way. In the vocabulary of first-order logic there are (i) sche- 
matic letters which we think of as taking the place of names or other 
subject-expressions ( ‘name-letters7), (ii) schematic letters to take the 
place of (first-level) predicates ( ‘predicate-letters7), which form an 
atomic formula when followed by suitably many name-letters7 and 
(iii) variables (‘pro-names’?) which take the place of the schematic 
name-letters, but must then be bound by quantifiers to obtain a closed 
formula. There may also be schematic function-letters; I shall ignore 
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these. There will also be some truth-functors, but these will play no part 
in the discussion. What I take to be the standard vocabulary of second- 
order logic makes two additions to this: first, variables (‘pro-predi- 
cates’ ?) which take the place of the schematic predicate-letters, and 
must be bound by quantifiers in order to obtain a closed formula; and 
second, a new type of schematic letter, which we think of as taking the 
place of second-level predicates. 

It is to be noted here that, if we follow Frege’s way of doing things, 
the addition of a new letter for second-level predicates does not alter the 
syntax of the first-level ones. For example, the formula VxFx is now 
seen to represent a particular second-level predicate, namely the uni- 
versal quantifier, applied to the first-level predicate here represented by 
F. And when we introduce a new schematic letter, say M, to represent 
an arbitrary second-level predicate, it will appear in contexts such as 
MwFx. Thus the letter F still occurs in immediate concatenation with a 
variable (or variables) of lowest level. In the perhaps more familiar 
notation of Church’s h-calculus, one writes rather M (hx . Fx), and this 
variant notation does in practice have some technical advantages, e.g. in 
stating the substitution rules. But it is merely a variant notation, and if it 
is adopted then it will also be natural to write the first formula above as 
V (hx . Fx). The extended vocabulary, then, allows first-level predicate- 
letters to occur ‘in argument position’ only to the extent that they 
already so occur in the familiar formula VxFx. 

In any case, we can for present purposes set aside any further 
consideration of how to arrange for these new schematic letters, for it 
is clear that the second-order logic that Higginbotham mainly considers 
does not contain them. This is because he is concerned with relations 
between logic and natural language, and it seems very reasonable to say 
as he does ($1) that a natural language does not contain schematic 
letters of any kind. (The point is perhaps not evident on his account 
of what we may reasonably regard as a ‘natural’ language. For example, 
Aristotle falls into using such letters, without any special explanation, 
when expounding his syllogistic. Why should one say that the Greek he 
is then employing is no longer his ‘first language’, nor even a possible 
‘first language’ for anyone?) We can similarly set aside the provision of 
predicate-variables for all predicates except the simplest, namely the 
one-place predicates, for again Higginbotham himself allows that quan- 
tification over predicates of two or more places is subject to special 
restraints of its own, which he has explored elsewhere (in particular his 
1990). The result is that the second-order logic we have to consider 
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differs from ordinary first-order logic only in that it contains variables 
for one-place predicates, and of course quantifiers to bind them. How, 
then, does it differ from a theory of classes or sets which is intended to 
allow us to quantify both over some objects which we will call ‘indi- 
viduals’, and over classes of them? (I shall speak mainly of classes 
rather than sets, to allow for the possibility of taking the ‘individuals’ to 
include all sets, for in that case our classes of them would have to be 
what are called ‘proper classes’, not sets.) To make the comparison 
closer, we may suppose that the class theory is also a ‘two-sorted’ 
theory, with one sort of letter and associated variable for individuals, 
and another sort for classes of these individuals. How, then, are the two 
theories to be distinguished? Higginbotham spends some time discuss- 
ing this question, which is raised by Azzouni (1994), but it seems to me 
that he gives the wrong answer to it. 

I think we can agree that the mere fact that in one theory one writes 
Fa, and in the other a E F is not by itself of any significance. It could be 
m more than a variation in notation, much as Polish notation for the 
truth functions is a variation on that standardly used outside Poland. A 
point which may seem to be of more significance is that the two logics 
may differ on what they count as a well-formed formula. For in the 
second-order predicate logic such concatenations of symbols as ab and 
FG will not be counted as formulae, whereas the class theory may well 
accept the analogous concatenations b E a and G E F as perfectly well- 
formed. But one may reply that, while our horizons are restricted as at 
present (I shall widen them in 93), the difference does not in fact seem 
to be of much importance. For though our class theory may indeed 
allow b E a,  G E F and the like as well-formed, still it must condemn all 
such formulae as false, and false simply because of their syntax. But in 
that case what would be lost if we did not count them as formulae at all? 
(It may be noted that when Russell first put forward a theory of types, in 
his Principles of Mathematics, he was certainly a realist about the 
existence of classes. Yet his proposed theory of classes contained just 
those restrictions on what is to count as a well-formed formula that we 
now think of as characteristic of higher-order logic.) I conclude that the 
difference between the two systems, if there is one, need not show up 
in their respective syntax, either in their rules of formation or-as I 
now add-in their rules of proof. So it must, apparently, lie in their 
semantics. 

On this point Higginbotham agrees. For he argues that the substitu- 
tional interpretation of the predicate-variables is too weak to be of 
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interest, and that second-order logic must provide some range of values 
for these variables. Moreover, he argues that these values must be taken 
to be ‘unsaturated’ entities, as Frege’s concepts are supposed to be, 
whereas the class theory will of course say that the values of the class- 
variables are to be classes, and from Frege’s viewpoint classes are 
objects, and hence ‘saturated’. But in my view this talk of different 
kinds of entities which one may take as ‘values’ is unhelpful. 

Second-order logic must of course provide truth-conditions for its 
second-level quantifications, but it seems to me (as it seemed to Boolos 
1975) that we need not see these as providing any entities-saturated or 
unsaturated-for the variables to range over. On the contrary, even in 
first-order logic we are familiar with the idea of considering ‘all inter- 
pretations’ of our schematic letters, both name-letters and predicate- 
letters, for the key concept of validity is defined as truth (or truth- 
preservation) in all interpretations. But the truth-conditions for the 
quantifiers can be given by using just the same idea. Thus a first-level 
quantification Vx(-x-) is counted as true (in a given interpretation) if 
and only if its singular instance (-U-) is true for all interpretations of 
a, provided that a is a new name-letter not already occurring in (-x-), 
and retaining the given domain and the given interpretations of all 
other symbols. In an exactly similar way, a second level quantification 
VF(-F-)’ is counted as true if and only if its singular instance 
(-G-) is true for all interpretations of G, under the same proviso. A 
name-letter is ‘interpreted’ as denoting some object in the given domain 
of objects, and a (one-place) predicate-letter is ‘interpreted’ as true of 
some objects in that domain (or none), and false of the others. So to 
speak of all ways of interpreting a predicate-letter is just to speak of all 
ways in which it may be true of some objects in the domain and false of 
others (and in each case we do not restrict attention to interpretations 
that can be specified within the language under consideration). Thus in 
second-order logic, as in first-order logic, the only ‘interpretations’ 
considered are extensional, i.e. they merely assign a truth-value to a 
sentence-letter, an object of the domain to be the denotation of a name- 
letter, and some objects of the domain to be those the predicate is true of. 
This is all we need for the characterisation of validity in these logics. In 
other kinds of logic, such as modal or epistemic logic, an interpretation 
may have to be more intensional, e.g. it may have to assign a condition 
under which the name is to denote an object or the predicate is to be true 
of one. But it will still be the case that interpreting a predicate-letter 
does not involve assigning to it any entity that it refers to. 
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The point I wish to make is this. Where the letter F is interpreted as 
true of just such-and-such objects, one can of course say that this 
provides a singular entity, namely the class of all those objects, to be 
its ‘value’. Or, if one believes in plural entities-as Higginbotham 
apparently does, at least if we are to take seriously his endorsement 
of Russell’s ‘classes as many’- one can instead say that it provides a 
plural entity, namely those objects, as the ‘value’ of that letter. Or 
again, if one believes in Fregean concepts, one can say that it provides 
such a concept as the ‘value’, namely the (‘unsaturated’) concept that 
maps each of those objects into the True and everything else into the 
False. If we grant the existence of entities of these three kinds, there 
seems nothing to choose between the various accounts. (And in place of 
classes we could, of course, speak of sets, provided that our domain of 
objects does constitute a set.) But the important point is that even if one 
does not believe in the existence of sets or classes or plural entities or 
Fregean concepts-and many do not-one can still speak of interpret- 
ing F as true of just such-and-such objects in the domain. There is no 
need to invoke any such controversial eritities as ‘values’, and certainly 
there is no need to treat a predicate-letter as referring to such a value, as 
Frege apparently did. For predicates do not refer; rather, they are true of 
some things and false of others. I believe, then, that it is a complete 
mistake to say that what is distinctive of second-order logic is that it 
invokes a special kind of entity to be the value of a predicate-variable. 
For the conceptual resources needed to explain these variables are just 
the same as are needed to explain first-order logic, and they need not be 
seen as requiring any such special entities. Of course I do not deny that 
it is highly convenient to use the familiar terminology of classes or sets, 
and most textbooks do so. But it is not essential. 

So let us come back to the question: what does make the difference 
between a logic of first order and of second order? The important point 
is surely that the notion of validity works out differently in the two 
cases. Of course, the formal definition is the same in both: a formula (or 
sequent) is valid if and only if it is true (or truth-preserving) under all 
permitted interpretations. In each case, we permit only certain inter- 
pretations of the truth-functors, namely the intended ones. In a first- 
order logic we also stipulate a special interpretation for the first-level 
quantifiers, namely that they are to be taken as generalising over all 
objects in the domain (whether or not we have names for those objects). 
But in a second-order logic we stipulate in addition a special interpreta- 
tion for the second-level quantifiers, namely that they are to be taken as 
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generalising over all ways in which apredicatemay be true of some objects 
in the domain and false of the others (and here again we mean all such 
ways, not only those which the language in question happens to have words 
for). It is this extra clause in the definition of what counts as a permitted 
interpretation, and hence in the definition of validity, that creates the 
important differences between the two logics. For example, it is respon- 
sible for the fact that first-order logic may be provided with a complete set 
of rules and axioms, whereas second-order logic has no complete proof 
procedure; the fact that first-order logic is compact, whereas second- 
order logic is not; the fact that many important notions not definable in 
first-order logic are definable in second-order logic; and so on. 

I give just one simple illustration of this last point. It is well-known 
that identity is not definable in any first-order theory, i.e. if the theory 
has ‘normal’ models (in which ‘=’ is interpreted as identity) then it also 
has ‘non-normal’ models (in which ‘=’ is differently interpreted). To 
see this, one need only observe that, given any normal model for the 
theory, we can create from it a non-normal one in this way: simply split 
each item in the domain into two ‘twins’, with each twin in the new 
model satisfying exactly the same predicates as its parent in the old one, 
but with ‘=’ interpreted as holding not only between an object and itself 
but also between an object and its twin. The result must be a non- 
normal model for the same theory. And this holds whatever special 
rules or axioms for ‘=’ are laid down in the theory, provided that the 
only quantifiers available in the theory are the first-level quantifiers. But 
if second-level quantifiers are present then of course identity can be 
defined by a = b e- VF(Fa e- Fb). This must have the desired effect, 
since one permitted interpretation of F is to take it as true of tK& object 
denoted by a and of nothing else. A similar points holds for many other 
notions besides identity; I shall exploit one in the next section. 

The important point about a second-order logic, then, is that it has 
an extra kind of quantification, on which a special interpretation is 
imposed. In consequence it has much greater expressive power, and 
at the same time it is no longer axiomatizable or compact, as first-order 
logic is. Of course we can achieve exactly the same effect in the idiom 
of the theory of classes. If, as envisaged, the class theory is presented as 
a two-sorted theory, with one sort of variable for individuals and 
another for classes of them, and if further we stipulate the appropriate 
interpretations in each case, then there really is no significant difference 
between them, for whatever can be done in the one can equally be done 
in the other. They may perfectly well be regarded merely as notational 
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variants of one another, and I would classify each as a second-order 
theory. Somebody may insist that the intended interpretation of the 
class-quantifiers is as generalising over classes, whereas we have seen 
that the interpretation of the predicate-quantifiers does not have to be 
given in these terms, but this will be a significant distinction only for 
one who holds that the existence of these classes (which may include 
classes that we cannot specify) is seriously in doubt. For those who are 
not so squeamish about their ontology, the complete equivalence of the 
two logics-in matters of proof, validity, expressive power, and so on- 
will make it appear that at this stage there is nothing to choose between 
them. The choice will take on a genuine significance when we progress 
to higher orders, as I shall do (very briefly) in my $3. But before I come 
to this I need to say something about ‘motivations’ for second-order 
logic, as described so far. 

2. Motivations for second-order logic 

Logic concerns reasoning. This has no simple and direct connection 
with the linguistic structures of natural languages. I offer just two brief 
examples. First, Frege’s greatest claim to fame (in my view) is his 
discovery of what we now call ‘modern logic’, in his Begriffsschrift 
of 1879. And the central and most important innovation in the BegrifSss- 
chrift is its treatment of quantification. Why did it take so long for the 
modern view of quantification to be discovered? For there are 22 
centuries between Aristotle and Frege. The answer is surely that in 
natural languages the means for expressing quantification are strange 
and convoluted. Thus in English to make clear the scopes of our 
quantifiers we rely on differences between ‘every’, ‘any’, and ‘all’, 
on the distinction between the active and the passive voice, and other 
such ad hoc devices. From the modern viewpoint, this is an extremely 
clumsy way of doing the job, and if we are interested in reasoning we 
shall clearly see the way it is done in modern logic as both superior and 
very different. It took a genius to discover this modern way just because 
the structures of natural languages do not in any way suggest it. Second, 
a related but much more general point. It is agreed that on a reasonable 
conception of what is to count as a natural language, such languages do 
not include the use of letters to express generality (either as schematic 
letters or as bound variables), But they are an indispensable aid to the 
expression of long and complex trains of reasoning, and so have in fact 
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been used for centuries by people (especially mathematicians) engaged 
in such reasoning. But it would be absurd to ask whether this use of 
letters is adequately ‘motivated’ by features of natural languages, for 
the motivation is rather the need to transcend natural languages, in order 
to think and reason more clearly. 

If, then, we ask for a ‘motivation’ for second-order logic, and expect 
this motivation to come from more ordinary procedures, the right place to 
look is to the way in which people do actually reason. Here the first thing 
to say is that ordinary first-order logic covers an amazing amount of our 
ordinary reasoning, and the need for a second order only emerges at a 
rather sophisticated stage. But the second thing to say is that it does, 
eventually, emerge. The clearest examples come from mathematics, and I 
briefly cite just two, which are reasonably well known. Dedekind in effect 
discovered a set of postulates for the elementary arithmetic of natural 
numbers (the postulates generally known today as ‘Peano’s postulates’), 
and he gave a proof that they are ‘categorical’ (i.e. that all models of them 
have the same structure, in this case the structure of the natural numbers). 
Cantor similarly put forward a set of postulates for the real numbers, and 
gave a proof of their categoricity. But each of these proofs relies upon a 
second-order understanding of the postulates in question, for it is well 
known that no set of first-order postulates which has an infinite normal 
model can be categorical. I, for one, would wish to accept these proofs as 
correct, so this commits me to accepting second-order logic. 

These examples are somewhat recherchk, so it may be useful if I 
extract from the first of them something rather less technical. Consider 
the argument which has infinitely many premises, as follows: 

a is not a parent of b 
a is not a parent of a parent of b 
a is not a parent of a parent of a parent of b 
&C 

From all these infinitely many premises taken together there follows the 
conclusion 

a is not an ancestor of b 

Of course, the argument can be recognised to be valid only by one who 
understands the relationship between being a parent of and being an 
ancestor of. Now since first-order logic is compact, it cannot recognise 
this argument as valid. For in a compact logic whatever follows from an 
infinite set of premises must also follow from some finite subset of 
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them, and that is evidently not the case here. One must infer that the 
required relationship between being a parent and being an ancestor 
cannot be formulated in first-order terms.’ But it can be formulated if 
the second-level quantifiers are available: that is just what Frege 
showed when he showed how to define the ancestral of any relation. 
In second-order logic we need only add this definition to the premises, 
and then there is no difficulty in showing that the argument is valid. 
This seems to me good ground for saying that even quite ordinary 
reasoning can involve resources which are available in a second-order 
logic, but not in a first-order logic. But I imagine that plausible exam- 
ples would have to involve infinity in some way, as this one does, for 
that is where the limitations of first-order logic first become clear. 

There are those who do not accept second-order logic, or anyway do 
not accept it as logic. In some cases, notably Quine’s, the objection is 
specifically to the predicate logic version, and the main ground of the 
objection seems to be that this is not English. Of course I agree that it is 
not English, but it seems to me none the worse for that. In any case, this 
objection does not apply to the version which uses the idiom of classes, 
but which I am prepared to treat as just the same theory in a different 
notation. A more common line of objection, found especially amongst 
those concerned with mathematics, is the old horror injniti in a new 
guise. In particular, it is said that we do not really understand the notion 
of all subsets of an infinite set, or (equivalently) the notion of all ways 
of interpreting a predicate-letter on an infinite domain. (I imagine that 
the fact that Cantor’s continuum problem is still unsolved has a lot to do 
with this proclaimed lack of understanding.) Hence we do not under- 
stand the second-level quantifiers. All I can say to this is that I feel no 
such lack of understanding myself. It is similarly all one can say to 
committed intuitionists, who claim that they do not understand the 
classical concept of negation. Finally, there are those, e.g. Kneale, 
who say that no matter how good a theory second-order logic may 
be, still it cannot be counted as logic because a genuine logic must 
have a complete proof procedure. I have some measure of sympathy 

’ It may seem that one can at least give a first-order definition of ‘parent’ in terms of 
‘ancestor’. Actually this is not too simple, for a person has two parents, one of whom 
may also be a grandparent. But let us change the example a little, writing ‘mother’ for 
‘parent’ and ‘matrilineal ancestor’ for ‘ancestor’. Then one can certainly give a first-order 
definition of ‘mother’ in terms of ‘matrilineal ancestor’. But adding this definition to the 
premises still cannot give us an argument that is first-order valid, just because first-order 
logic is compact. 
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with this point, for certainly we should all prefer it if a complete proof 
procedure were available. But one cannot regard it as a cogent argu- 
ment. For the bounds of logic are indeterminate, and one can equally 
imagine someone claiming that all genuine logics must have an effec- 
tive decision procedure. This, of course, would rule out even first-order 
logic, as we now understand it, but it is a criterion that would be 
satisfied by all logics before Frege’s. 

I therefore recommend the acceptance of second-order logic, what- 
ever may or may not be suggested by the idioms of natural languages. 

3. Logics of higher orders 

The second-order predicate logic considered so far is a truncated theory, 
for it omits quantification over predicates of two or more places, and it 
lacks schematic letters for second-level predicates. That is why it 
exactly matches the second-order theory of classes or sets. But let us 
now restore the omissions. It is clear that with quantification over 
many-place predicates now available, the predicate logic at once scores 
over the class logic, for in a theory of classes relations can only be 
handled in a somewhat roundabout way. (Standardly one identifies the 
relation R with the class of all unordered pairs { {x}, { x , y } }  such that 
Rxy. But this is a second-level class, and so not available in the class 
theory so far considered.) But a more significant difference comes to 
light when we reflect upon the restored schematic letters for second- 
level predicates. For it at once becomes obvious that the step by which 
we moved from a theory of first order to one of second order, namely by 
subjecting the first-level predicate-letters to quantification, can now be 
repeated. So we move up to a third-order theory, by once more intro- 
ducing quantifiers to bind our second-level predicate-letters, at the same 
time adding a new kind of schematic letter to represent any arbitrary 
third-level predicate. Clearly the ascent can continue, and there is no 
natural stopping place, so we are led on to the full hierarchy of types, 
with quantifiers of every (finite) level. Now of course something very 
similar can be done in the class theory, by adding new styles of vari- 
ables for classes of second level, then of third level and so on, until 
again an infinite hierarchy is reached. But there are two very significant 
differences between the two hierarchies. 

First, the hierarchy of types will be a strict hierarchy, in the sense 
that items of one level can take as arguments only items of the next 
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lower level, and all other ways of putting symbols together will be 
deemed meaningless. This restriction has a good motivation in the 
origins of type theory, namely as developing out of the familiar first- 
order predicate logic. For names and first-level predicates are evidently 
expressions of different types, and second-level predicates (for exam- 
ple, the familiar quantifiers) are different again, and so on up. Thus, just 
as one cannot form a sentence by putting together two names, or two 
first-level predicates, so also one cannot form a sentence by putting 
together a quantifier and a name, and so on. To put things more pre- 
cisely, and remembering that we have relations to consider too (which 
will now include mixed-level relations), we may set out the position in 
this way. Each different style of letter and variable will be regarded as 
carrying a type-index, and the type-indices are defined thus: 

(i) 0 is a type-index (and is the index for names); 
(ii) If a, p, . . . are type-indices, so is (a, p, . . .), 

To illustrate briefly, the first-level types are (0), (O,O), (0, 0, 0), . . . ; the 
second-level types include ((0)), ((0, 0)), ((0), (0)), . . . ; and mixed-level 
types include ((O),O), (((0), 0), (0), 0), . . . . The ruling on significant 
combinations is this: an expression of type (a, p, . . .) can take as 
arguments only a series of expressions of types a, p, . . . respectively. 
As I have indicated, this ruling is apparently imposed just by very 
elementary requirements on how to put words or symbols together to 
form a sentence. 

By contrast, grammar imposes no such requirements on the formu- 
lae of a theory of classes or sets. For the predicate in such a formula is 
always E, i.e. ‘is a member of’, and all classes of whatever level are 
thought of as referred to by name-like expressions, and there is no 
grammatical bar to combining any two such expressions with E. Con- 
sequently, while one can of course propose a hierarchy of classes which 
is strict in the same sense as before, and thus corresponds exactly with 
the monadic part of the type hierarchy, that is not what is usually done, 
for it seems to leave a lot out. If classes or sets are thought of as 
hierarchically arranged at all, then nowadays one will take the hierarchy 
as a cumulative one. So one begins, as we have done, with one style of 
variable for individuals, and another for classes of individuals. But the 
variables introduced at the next stage will range over all classes that 
have as members either individuals or first-level classes or both. And 
generally the variables of level n will range over all the classes that can 
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be formed from all items of all levels less than n. This clearly gives a 
hierarchy of a very different structure to that of the type hierarchy. 

A further, and consequential, difference is this. There is no concep- 
tual bar to extending the cumulative hierarchy of classes into the trans- 
finite, i.e. by adding yet further classes of level U), which can have as 
members items from all finite levels, and then classes of level U) + 1 
which can also have classes of level o as members, and so on up without 
limit. But, at least at first sight, there would seem to be no sense in trying 
to extend the strict hierarchy of types in a similar way. For if each type of 
expression can take only the next lower type of expression as argument, 
there is clearly no role for an expression of level U), and in any case one is 
quite at a loss to say what an ‘infinite type’ might be. 

We began with a predicate logic, and a corresponding class theory, of 
second order. At that stage, the theories appeared so like one another, in 
all important respects, that there was scarcely any question of choosing 
between them. But we have now seen that when each is extended to yet 
higher orders, in what seems to be the natural way, they do diverge very 
considerably. Yet each of them, it seems to me, deserves to be called a 
higher-order logic. At any rate, they share these features: each is a many- 
sorted theory, with many different kinds of variable; in each case the 
intended range of each different kind of variable is explained differently, 
and hence the intended interpretation of the quantifiers that bind these 
variables; so what counts as a ‘permitted interpretation’ is at each stage 
restricted by the stipulated interpretation for these quantifiers. It follows 
that the key notion of validity, i.e. truth in all permitted interpretations, is 
multiply restricted in each case. This, as we saw, was the source of the 
important differences between an ordinary logic of first order and of 
second order; it is now reiterated infinitely many times. 

There are, no doubt, yet other higher-order theories. In particular, 
there are predicative versions both of our type theory and of our class 
theory. But I cannot consider them here. Instead, I end with some very 
brief considerations of what motivation one might have for adopting 
either of the two theories here outlined. 

4. Motivations again 

One important distinction between the two theories lies in what they do 
or do not allow one to say. From this point of view, the restrictions 
imposed by type theory are certainly unwelcome, and I believe that they 
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should rule it out of consideration. No matter how natural these restric- 
tions may appear to be, when one looks at the motivations for the 
theory, still their effect is disastrous. A well-known example is that 
if, like Russell, one cannot accept Frege’s claim that numbers are 
individuals of the lowest level, then type theory provides no level on 
which to locate them. But the complaint is not restricted to numbers, or 
even to mathematical entities more generally; it continues to surface 
with all kinds of other examples, in particular with many concepts 
employed by logicians. For example, relations of many different types 
may be transitive, so the predicate ‘is transitive’ cannot be assigned to 
any type. I have explored these problems in my (1980), and I shall not 
further rehearse them here. But I do in that article suggest a way of 
extending type theory, by adding what I call ‘type-neutral’ predicates, 
which I think goes a fair way towards resolving this problem. The 
addition is in some ways similar to the addition to a class theory of 
classes at infinite levels, but I would not wish the analogy to be pressed 
at all strictly. If type theory is to survive as a serious claimant on our 
attention, then I believe it must first be extended in some such way as I 
have proposed. But there is still room for serious doubt over whether, 
even when so extended, it is adequate to represent the ordinary reason- 
ing of logicians and mathematicians. 

By contrast, the class theory that I have outlined is now more or less 
orthodox amongst them, though retitled ‘set theory’, and with two 
variations from what I have said so far. The first is of no philosophical 
importance: for technical simplicity mathematicians prefer to work with 
the theory of pure sets, in which there are no individuals and every item 
is a set, built up ultimately from the null set. The second is more 
relevant to our present concerns. The sets are regarded as being all of 
the same logical type, and consequently the theory is often presented as 
a first-order theory, with just the one kind of quantifier, which ranges 
over all sets. The sets are still arranged in a cumulative hierarchy (this is 
ensured by the axiom of foundation), stretching into the transfinite, as I 
have briefly described. To speak very broadly, this is what protects the 
theory from the well-known ‘paradoxes’ (i.e. contradictions) that our 
naive thinking about sets-or, indeed, about other abstract objects-so 
often falls into. And the example shows very nicely that Russell was 
wrong in supposing that the only way to avoid these contradictions is to 
pay careful attention to distinctions of logical type. Moreover, the 
previous objections to type theory now automatically fall away; for 
example, since sets are all of the same logical type, there is now no 
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difficulty in defining a predicate ‘is transitive’ which is true of all sets 
that are transitive relations, whatever their level in the cumulative 
hierarchy may be. Should we then conclude that there is after all no 
need for theories of higher orders, not even of second order? 

Far from it. My previous considerations remain in force, and can be 
further illustrated from set theory itself, for when that theory is pre- 
sented as a merely first-order theory it cannot do justice to our intuitive 
conception of a set. Like all first-order theories, it must permit ‘unin- 
tended’ models, which we can recognise as a distortion of that original 
conception. Indeed, the extensive and fruitful work on ‘inner models’ of 
set theory is a copious illustration of the point. So set theory itself 
seems to me to cry out for a second-order formulation, and it is easy to 
see how this is to be done. For example, in a first-order formulation 
the familiar axiom of subsets must be laid down as a schema gen- 
erating infinitely many axioms: for any well-formed formula A(z) 
containing free occurrences of z but not of y ,  there is an axiom 
Vx3yVz(z~y H ZEX A A(z)). In effect, this generalises only over 
those properties of members z of x which can be expressed in the 
standard vocabulary of set theory. But we surely wish to generalise 
over all such properties, whether or not they can be so expressed, and 
the way to do this is obvious: introduce a second-level quantifier, and 
write VFVx3yVz(z~y H ZEX A Fz). When the axiom of subsets is 
superseded by the axiom of replacement, one can of course give a 
second-level formulation of that axiom too. 

Unfortunately one cannot claim that the second-order formulation of 
set theory results in a categorical theory, for it does nothing to resolve 
this much-debated question: just how far does the cumulative hierarchy 
of sets extend? Or, in other words, how far does the series of infinite 
ordinals go? But it does introduce a definiteness hitherto lacking. I give 
just one well-known example, Cantor’s continuum hypothesis, which 
states that there is no infinite cardinal number between the number of 
the natural numbers and the number of the real numbers. As we know, 
given just the usual first-order formulation of set theory, all one can say 
about this hypothesis is that it is true in some models of the theory and 
false in others. But with a second-order formulation one can say more 
strongly: either it is true in all models of the theory, or it is false in all 
models. But, of course, we still do not know which. I would say that the 
fact that people are still trying to resolve this problem shows that it is in 
fact the second-order formulation of set theory that they are really 
working with. 
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So far as I am aware, the second-order formulation of set theory has 
all the advantages of the theories of yet higher orders previously 
considered. The addition of ‘proper classes’ to a standard set theory 
goes some way towards a full second-order formulation, but-as it is 
usually presented-not all the way. So I conclude that there is a real 
need for second-level quantification, but whether there is also a need for 
quantification of higher levels is still a moot question, and further 
exploration is needed. 
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