
Environ Resource Econ (2007) 37:211–232
DOI 10.1007/s10640-007-9121-8

Beyond implicit prices: recovering theoretically
consistent and transferable values for noise avoidance
from a hedonic property price model

Brett Day · Ian Bateman · Iain Lake

Published online: 16 May 2007
© Springer Science+Business Media B.V. 2007

Abstract Using a two-stage hedonic pricing methodology we estimate a system of struc-
tural demand equations for different sources of transport-related noise. In the first stage,
we identify market segments using model-based clustering techniques and estimate separate
hedonic price functions (HPFs) for each segment. In so doing, we show how a semipara-
metric spatial smoothing estimator outperforms other standard specifications of the HPF. In
the second stage, we control for non-linearity of the budget constraint and identify demand
relationships using techniques that account for problems of endogeneity and censoring of
the dependent variable. Our estimated demand functions provide welfare estimates for peace
and quiet that we believe to be the first derived from property market data in a theoretically
consistent manner.
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1 Introduction

For many industrialised nations environmental noise is emerging as a local pollutant of major
concern. In the European Union (EU), for example, it is claimed that around 20% of the pop-
ulation are exposed to environmental noise levels that health experts consider unacceptable
(EC 1996). Indeed, the Directive on the Assessment and Management of Environmental
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212 B. Day et al.

Noise requires member states of the EU to draw up “action plans” to combat noise pollution
(EC 2002).

Of course, noise reduction measures are costly and establishing whether such measures
are worthwhile requires comparison of these costs with the benefits of a quieter environment.
One framework within which this comparison can be made is cost–benefit analysis (CBA).1

Attempts to integrate noise considerations into CBA have been hampered, however, by the
absence of monetary valuations of the welfare benefits of noise reductions. For example,
until very recently the UK, like many other nations, undertook CBA of transport projects but
failed to incorporate monetarised estimates of noise (dis)benefits in the analysis (Odgaard
et al. 2005).

For David Pearce, of course, this sort of omission was like a red rag to a bull. He argued
vociferously for policy appraisal that provided a “level playing field” (a favoured phrase)
upon which environmental costs and benefits were afforded the same consideration as other
costs and benefits. Indeed, in recent years, David dedicated much of his research effort to
the field of non-market valuation and encouraged others to do so also. Moreover, he used his
considerable influence to promote the outputs of such research and to persuade and cajole
decision-makers into using non-market valuation in policy appraisal. The research reported in
this paper is a testament to his achievements in both those pursuits. The work results from the
last PhD thesis that David supervised before retiring from academic life (Day 2005). More-
over, the findings of the research have fed directly into the policy-making process, being the
basis for the Department for Transport’s guidance on the appraisal of transport related noise
impacts of multi-modal transport plans (DfT 2006; Nellthorp et al. forthcoming).

In this research the method of hedonic pricing is applied to property market data collected
from the City of Birmingham. As is well known, hedonic pricing uses techniques of multiple
regression to isolate implicit prices; that is, differences in property prices attributable to
marginal differences in property characteristics.2 Numerous previous studies have used this
technique to report implicit prices for noise from a variety of urban property markets (for a
review see Bateman et al. 2001). According to the theory, an implicit price for noise provides
a monetary estimate of the welfare benefit of a marginal change in noise. However, like any
market price, implicit prices are market specific, reflecting only the particular conditions
of supply and demand that exist in that property market. Accordingly, an implicit price for
noise estimated in one urban area offers little indication of the benefits of changes in noise
experienced elsewhere. Far better would be to use the information provided by observations
of households’ choices of noise exposure when faced by different implicit prices to identify
the demand relationship for peace and quiet. Areas under such a demand curve provide valid
approximations to the welfare benefits of non-marginal changes in noise exposure (Bartik
1988) and, because they are based on underlying preferences and not market prices, indicate
values that might be used in benefits transfer exercises.

Unfortunately, estimating demand relationships from hedonic pricing data is a theoreti-
cally and analytically challenging task.3 Indeed, this study is one of only a handful that have
attempted to estimate demand relationships using the hedonic pricing method in a theoret-
ically consistent manner (other examples include, Bajic 1993; Boyle et al. 1999; Cheshire
and Sheppard 1998; Palmquist and Isangkura 1999; and Zabel and Kiel 2000). Moreover,

1 See the discussions of CBA in general given by Turner (2007) and the early use of hedonic pricing within
CBA given by Barde (2007) in this collection.
2 The most frequently applied alternatives to hedonic pricing are stated preference methods as discussed by
Carson and Groves (2007) in this collection.
3 Haab and McConnell (2003) state that “With a few exceptions, researchers have abandoned any attempts to
recover preferences, and work instead with the hedonic price function” (p. 251).
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as far as the authors are aware it is the only study to estimate such demand relationships for
avoidance of transport-related noise using property price data.

Our study is unique in other ways. As briefly described in Sect. 3, our data is one of the
largest and richest property market datasets yet compiled. In particular, our data set contains
measures of noise exposure from road, rail and aircraft traffic, such that our study is the first,
of which we are aware, to investigate these three sources of noise pollution simultaneously.

In addition, we investigate our data for evidence of market segmentation. To this end we
apply techniques of model-based clustering, a statistically rich set of analytical tools that
use the data itself to inform on the pattern of segmentation in the property market (Fraley
and Raftery 1998). These techniques have never previously been applied in this context and,
as far as the authors can ascertain, neither have they been applied in other fields of applied
econometrics.

Furthermore, we contribute to the substantial literature on the specification of hedonic price
functions. In particular, we combine the partial linear specification of Anglin and Gencay
(1996) with the smooth spatial effects estimator of Gibbons and Machin (2003). Accordingly,
we employ a specification in which variables that we believe a priori to be key determinants
of market price enter the hedonic price function non-parametrically whilst simultaneously
accounting for the possibility of omitted spatial covariates by spatially smoothing the data.
Finally, we correct the standard errors of our parameter estimates for spatial autocorrelation
using a two stage generalised moments estimator suggested by Kelejian and Prucha (1999).

Our demand analysis is also unique in that we estimate a demand system for more than
one source of noise pollution. In so doing, we correct the data for problems arising from
the non-linearity of the budget constraint and apply Amemiya’s generalised least squares
estimator (Newey 1987) to account for the endogeneity of implicit prices and the censoring
of the quantity variable at the background level of urban noise.

2 The method of hedonic pricing

In the spirit of Rosen (1974) our estimation strategy involves two stages. In the first stage we
estimate the market-clearing hedonic price function (HPF);

P = P (z) (1)

where z is a vector (with elements zk ; k = 1, 2, . . ., K ) of property attributes (including noise
exposure) and P is the price that a property with those attributes commands in the market.
For each household in a sample, therefore, the implicit price of a property attribute can be
calculated from the HPF by evaluating ∂ P (z)/∂zk ≡ pzk .

As in the standard model of consumer choice, Rosen showed that utility maximising
households will choose a residential location where the level of each property attribute is
such that their marginal willingness to pay (MWTP) for each attribute just equals its implicit
price. Accordingly, the second stage of the estimation procedure is to regress observed levels
of residential noise exposure on calculated implicit prices in order to estimate a demand
function for peace and quiet.

There has been considerable debate as to whether the demand function can be identified
using this two stage procedure given data from just one market (Ekeland et al. 2002). The
problem is in essence quite simple; to estimate a household’s demand curve one must have
information on at least two points along its length, data from a single market provides just one.
As a consequence, researchers attempting to identify demand functions for attributes must
follow one of two avenues; either (1) impose structure on the model of household preferences
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and use the non-linearity of the HPF to afford identification (as per Ekeland et al. 2004) or (2)
introduce exogenous price variation into the data by collecting observations from a variety of
property markets each characterised by unique and differing HPFs (as per Brown and Rosen
1982; Murray 1982; McConnell and Phipps 1987). In our application we follow the latter
strategy.

The process of recovering an estimate of the demand curve is further complicated by the
fact that in hedonic markets, where individual attributes are bundled into a composite good
commanding a single market price, it is not necessarily the case that the implied price per
unit of an attribute is a constant. Under such circumstances the standard duality results of
consumer theory no longer hold. In particular, Marshallian demand functions do not nec-
essarily manifest themselves as downward sloping curves in price-quantity space. In our
application, we follow the procedure proposed by Murray (1982) and Palmquist (1988) in
which adjustments are made to the income argument in the demand relationship so as to
estimate pseudo-Marshallian demand functions whose properties resemble those of standard
Marshallian demand functions in a world of parametric prices.

3 The data

Birmingham is the UKs second largest city with a diverse housing stock and an diverse pop-
ulation. Details of the selling price, sale date and full address for each residential property
transaction in the city and surrounds during 1997 were obtained from the UK Land Registry.
Details of the structural characteristics of each property were obtained from the Valuation
Office Agency (VOA). Amongst other details, the VOA provided data on the number of
bedrooms and bathrooms in each property, total floor area, the property’s age, whether the
property was a bungalow or house (apartments were excluded), whether the property was
detached, semi-detached, in or at the end of a terrace and whether the property had central
heating and access to off-road parking. Further, the VOA classifies properties by age and style
of construction into one of around 30 property types that provide an additional indication of
property quality.

Addresses were geolocated using a GIS. Subsequently digital datasets were used to esti-
mate each property’s garden area and to calculate car travel times and walking distances
from each property to (dis)amenities including the city centre, airport, primary schools,
parks, shops, railway stations, industrial sites and landfills. To further refine the accessibility
measures, an index was constructed that combined the walking-distance proximity of local
primary schools with measures of school quality. A similar index was constructed to describe
proximity to local commercial centres based on the quantity and proximity of shops.

Using a GIS, data on land uses and the location and orientation of each property was
combined with information on the landscape topology and building heights to calculate indi-
ces describing the views available from each property. View indices were constructed for
recreational parkland and water surfaces.

Digital noise maps provided estimates of each property’s exposure to daytime road, rail
and air traffic noise measured in decibels LEQ (DEFRA 2000). LEQ summarises a location’s
noise exposure by determining the continuous noise level that has the equivalent energy
content as the varying noise signal experienced at that location.

Data on the socioeconomic composition of property neighbourhoods were drawn from
the 1991 UK census. For administrative purposes Birmingham is divided into 39 political
units known as wards (see panel A of Fig. 1). Each ward is further divided into a number of
enumeration districts (EDs) which form the smallest area over which census data is provided
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Fig. 1 Hierarchy of administrative areas in Birmingham

(see panel B of Fig. 1). Birmingham is divided into 1,940 EDs, with each ED containing an
average of 191 households (see panel C of Fig. 1).

Census data provides hundreds of variables describing the socioeconomic characteristics
of households residing in each ED. Factor analysis was employed to condense this excess
of neighbourhood attributes into a more manageable set of indices. Following standard pro-
cedures we retain four factors that are interpreted as measuring the increasing; (1) wealth
of households (2) presence of inhabitants from ethnic minorities (3) age of inhabitants,
(4) presence of households with children.
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Applying these various techniques, data records were successfully compiled for some
10,848 residential property transactions in Birmingham in 1997. A detailed description of
the data can be found in Bateman et al. (2004).

4 First stage: econometric model

It is generally acknowledged that urban property markets are not homogenous entities. Rather
they are composed of a collection of distinct but related market segments. Watkins (2001)
argues that the property market comprises households that form “consumer groups” and a
housing stock that comprises distinct “product groups”. The matching of consumer groups
with product groups gives rise to segmentation of the market whilst the differing conditions
of supply and demand within each segment imply that each is characterised by a unique
HPF. Following Bajic (1993), we introduce price variation into the second stage estimation
procedures by identifying market segments and fitting separate HPFs to each segment.

Our intention is to identify segments as groups of properties with similar structural attri-
butes inhabited by households with similar socioeconomic characteristics. Cluster analysis
has been used for this purpose by previous researchers (e.g. Abraham et al. 1994; Bourassa
et al. 1999; and Goetzmann and Wachter 1995). However, such studies have used relatively
simple clustering algorithms that provide no independent statistical indication of the nature
or number of clusters to be found in the data. In this research we employ model-based cluster
analysis (Fraley and Raftery 1998) a recently developed clustering technique that answers
both these important questions. As far as the authors are aware, this is the first economic
application of this technique.

The starting point for any cluster analysis is to define a set of M variables by which the
observations are to be clustered. The objective of the analysis is to identify the various groups
of observations that form distinct clusters in the M-space defined by those variables. The
fundamental assumption of model-based clustering is that the members of each group form
a cluster whose location and shape can be approximated by a P-dimensional probability
distribution. The data observed by the researcher is the composite of data points drawn at
random from a finite number of such clusters.

Fraley and Raftery (1998) examine the case in which the members of each cluster are
assumed to be Gaussian distributed. They show that given an initial assumption concerning
the number of clusters, the likelihood function for the clustering problem can be maximised
using a simple EM algorithm. Moreover, the number of clusters best characterising the data
can be identified by comparing models assuming different numbers of clusters according to
Bayes Information Criteria. Since we suspect that geographical location will play an impor-
tant role in determining market segment membership, we make use of a procedure suggested
by Posse (2001) and post-process the clustering classification to take account of the spatial
information.

We estimate separate HPFs for each cluster. Following standard practice (e.g. Allen et al.
1995) we assume that the properties in a cluster form a separate market segment if the HPF
for that cluster differs significantly from those of the other clusters.

Unfortunately, economic theory provides little guidance as to the functional form of HPFs.
Indeed, recent research simulating markets for differentiated goods reveals that the equilib-
rium HPF will tend to be highly non-linear or even kinked (Heckman et al. 2003; Nesheim
2002). Moreover, it is widely recognised that location plays a major role in determining prop-
erty prices. Even with the advances in data collation provided by GIS, it seems unlikely that
any data set will be sufficiently comprehensive to capture every aspect of location that might
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induce correlation in prices over space. Accordingly, our regression function must allow for
non-linearities in known covariates and for the possibility of omitted spatial covariates.

Anglin and Gencay (1996) introduced flexibility into the functional form of the HPF by
using a partially linear model (PLM). The PLM specification allows prices to depend on some
covariates linearly and others non-parametrically. We allow for non-linearities by including
in the non-parameteric part of the specification those variables that we believe a priori to be
key determinants of market price.

Gibbons and Machin (2003) also exploit the PLM specification in order to account for
omitted locational covariates. They spatially smooth their data by including the location of
each observation in the non-parametric part of the model.

Here we combine the specifications of Anglin and Gencay (1996) and Gibbons and
Machin (2003) by including both spatial coordinates and property characteristics in the non-
parametric part of the PLM. As such our specification allows for non-linearity with respect
to certain attributes whilst controlling for spatial variation in prices that is not captured by
the regressors in our data set. We refer to this model as the PLM with spatial smoothing
(PLM + SS). Our specification is as follows;

ln Pi = ziβ + q (xi , ci ) + εi (2)

where zi is a k-vector of regressors whose influence on property price is determined by the
parameters β, whilst xi is a p-vector of regressors and ci is the two-dimensional vector of
coordinates whose joint influence on prices is determined by the unknown function q (·).

Robinson (1988) shows that the model in (2) can be rewritten as;

ln Pi − E
[
ln P|xi , ci

] = (zi − E [z|xi , ci ]) β + εi (3)

and that β can be estimated using a two-step procedure;

• Estimate the unknown conditional means E
[
ln P|xi , ci

]
and E [z|xi , ci ] using non-

parametric regression.
• Substitute these estimates for the unknown functions in (3) and apply standard regression

techniques to recover β.

We use a Nadaraya–Watson estimator with a Gaussian kernel to estimate the quantities
E

[
ln P|xi , ci

]
and E [z|xi , ci ]. We fix the bandwidth for the elements of ci to a pre-specified

value, b, such that each observation is spatially smoothed over the same circular area. We
adopt a bandwidth matrix for xi that is proportional to the sample covariance matrix of x
and estimate this proportion, h, using cross-validation. Finally, to allow for differences in the
density of the data, we apply an adaptive-kernel procedure to provide an observation-specific
bandwidth, hi .

The data can be expressed as differences from the conditional expectations; that is ỹi =
ln P̃i = ln Pi − E

[
ln P|xi , ci

]
and z̃i = zi − E [z|xi , ci ]. If the ỹi are stacked to form the

N × 1 vector Ỹ and the z̃i vectors stacked to form the N × k matrix Z̃, then the parameters
can be estimated according to;

β̃ =
(

Z̃
′
Z̃
)−1

Z̃
′
Ỹ (4)

Despite spatially smoothing the data, some locational features may not be captured by
the model. Since these features are held in common by properties in close proximity, the
regression residuals may exhibit spatial correlation. In that case, (4) will return inefficient
estimates of the parameters and biased estimates of their standard errors.
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We assume that spatial error dependence will take the form;

ε = ρWε + u (5)

where ε is the [N × 1] vector of regression residuals, ρ is the error dependence parameter
to be estimated and u is the usual N × 1 vector of random error terms with expected value
zero and covariance matrix σ 2 I . Notice that ρ = 0 implies ε = u and there is no spatial
dependence in the data. The spatial association between properties is captured by the N × N
weighting matrix, W . The diagonal elements of W are zero, whilst the wi j th off-diagonal
element is initially set to one if the i th and j th property are located within d metres of each
other, otherwise that element is set to zero.

Following Bell and Bockstael (2000) we employ a generalised moments (GM) estimator
developed by Kelejian and Prucha (1999) to estimate the model with spatial error depen-
dence. This is a two step estimator. The first step recovers a consistent estimate of ρ̂, whilst
the second step estimates the parameters of the HPF using the feasible generalised least
squares estimator;

β̂ =
(

Z̃
′ ((

I − ρ̂W
)′(I − ρ̂W

))−1
Z̃
)−1

Z̃
′ ((

I − ρ̂W
)′(I − ρ̂W

))−1
Ỹ (6)

Finally, since we include the noise variables in z, the implicit price of noise for each
observation can be calculated as;

pzk = exp
(

E [ln P|xi , ci ] + (zi − E [z|xi , ci ]) β̂
)

β̂zk

= exp
(

ln P̂i

)
β̂zk (7)

where β̂zk is the parameter estimated on the noise variable zk .

5 Estimation of Implicit Prices for Noise

We apply techniques of model-based clustering so as to identify groups (clusters) of proper-
ties in the multidimensional space defined by each property’s floor area, garden area as well
as the four factors indicating the relative wealth, ethnicity, adult age composition and family
composition of the property’s neighbourhood. Having post-processed the cluster definitions
to incorporate geographic information into the classification of observations to clusters, our
analysis provides evidence for the existence of eight clusters. Table 1 summarises the char-
acteristics of the properties and inhabitants in each cluster.

We partition the data according to the clustering classification and estimate separate HPFs
for each partition using the PLM + SS model. We include in the regression analysis all of
the variables described Sect. 3. In particular, our measures of noise exposure from road, rail
and air traffic are taken as dB in excess of 55 dB LEQ, a threshold commonly regarded as a
measure of background noise in urban areas. Along with spatial coordinates, we include in
the non-parametric part of the specification variables describing each property’s floor area,
garden area, construction age and sale date. The spatial smoothing bandwidth, b, was fixed
at a distance approximating the radius of a ward.

We examined the residuals from the PLM + SS regressions for outliers and found con-
centrations of observations in the extreme left hand tail of the error distributions. Many of
these ‘under-priced’ properties have apparently sold outside the market and therefore offer
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Table 1 Characteristics of Birmingham market segments

Market segment Property size Income Ethnicity Children

1. Low-income, White Small Low White Many
2. Low-income, Ethnic Small Low Ethnic Many
3. Middle-income, Young, No children Small Medium Mixed Few
4. Middle-income, White Small Medium White Some
5. Middle-income, Mixed Medium Medium Mixed Some
6. High-income, Large properties Large High Mixed Few
7. High-income, Small properties Small High White Some
8. High-income, Medium properties Medium High White Many

Table 2 Unadjusted R2 statistics for different specifications of market segment HPFs

Market segment N LM PLM PLM + SS

1. Low-income, White 1,484 0.425 0.454 0.559
2. Low-income, Ethnic 1,016 0.446 0.510 0.618
3. Middle-income, Young, No children 1,523 0.647 0.721 0.764
4. Middle-income, White 1,362 0.657 0.700 0.709
5. Middle-income, Mixed 1,058 0.649 0.722 0.778
6. High-income, Large properties 424 0.810 0.875 0.890
7. High-income, Small properties 2,341 0.587 0.640 0.695
8. High-income, Medium properties 1,432 0.751 0.820 0.839

no information on the HPF for that market.4 After individual investigation we trimmed 1.9%
of the observations from the data and re-estimated (4). We examined the residuals from this
regression for evidence of spatial correlation over an area approximating that of an ED. In
all eight cases Moran’s I statistic (Cliff and Ord 1972) is large enough to reject the null
hypothesis of no spatial dependence between residuals with greater than 95% confidence. A
robust test proposed by Kelejian and Robinson (1992) further supports this conclusion. As
such we apply the GM estimator (6) to estimate the parameters of the HPFs.

To assess the overall fit of the estimated HPFs and the performance of the PLM + SS
model, observe Table 2. The second column of Table 2 indicates the number of observations
in each segment. The remaining columns list unadjusted R2 statistics (that is, measures of
the proportion of the total variation in the dependent variable explained by the model) for
each HPF estimated using three nested model specifications; a standard linear specification
(LM), the partially linear specification without spatial smoothing (PLM) and the partially
linear model with spatial smoothing (PLM + SS).

Comparison of the LM and PLM reveals that the latter semiparametric estimator affords
significant gains in explanatory power; on average across the segments a 6% increase in
the R2 score. Clearly, the linear specification provides a relatively poor approximation to
the functional relationship between property prices and the variables contained in the non-
parameteric part of the specification. Moreover, moving from the PLM to the PLM + SS
model, the R2 scores increase by a further 5% on average. Notice that in the two low-income
market segments (segments 1 and 2) where the fit of the LM is particularly poor, the PLM + SS
provides the relatively greatest increase in model fit (13% and 17%, respectively). Evidently,

4 For example, a whole row of properties were sold within a few months of each other at prices well below
the apparent market rate. Examination of recent aerial photographs provided an explanation; the houses had
since been demolished to make way for a road widening scheme.
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despite the regressors in our model containing numerous descriptions of locational quality
(e.g. neighbourhood socioeconomics as well as proximity to the city centre, airport, schools,
parks, shops, railway stations, industrial and landfill sites), certain features of the spatial
environment that have a substantive impact on property prices are not captured by the PLM
model. The PLM + SS model is clearly superior to the other specifications in its ability to
describe variation in property prices.

Of course, our particular concern is not goodness of fit but the impact of model specifica-
tion on estimates of the coefficients of the HPF, particularly those relating to transport noise.
Tables 3–5 document the coefficients for road, rail and air traffic noise, respectively. The
second column in each of these tables records the number of properties in each market seg-
ment exposed to levels of noise from that source above the urban background level (55 dB).
Notice that our data contains many more properties exposed to above-threshold levels of
road noise than rail noise. Accordingly, we would expect our estimates of the road noise
parameters to be estimated with relatively greater precision than those for rail noise. Notice
further that the considerable geographical separation in market segments means that aircraft
noise is concentrated largely in the three segments (1, 4 and 7) that are closest to Birmingham
International Airport.

The subsequent columns of Tables 3–5 record coefficient estimates for the LM, PLM and
PLM + SS specifications. Moreover, the final column records coefficients from a Bayesian
update of the PLM + SS model that simultaneously constrains the three noise coefficients
to the negative orthant (for computational details see Geweke 1986). The standard errors
reported in the tables are corrected for spatial error dependence using the GM estimator
described previously. Since we assume that exposure to noise, ceteris paribus, can only
reduce the selling price of a property, significance is judged through a one-tailed t-test of the

Table 3 Road noise parameters of the HPFs (standard errors in brackets)

Market segment Obs. above LM PLM PLM + SS PLM + SS
55 dB constrained
threshold

1. Low-income, 307 0.0008 0.0008 0.0018 −0.0006†

White (0.0014) (0.0014) (0.0013) (0.0005)

2. Low-income, 208 0.0008 0.0013 0.0035 −0.0008†

Ethnic (0.0019) (0.0019) (0.0019) (0.0007)

3. Middle-income, 521 −0.0047∗∗∗ −0.0050∗∗∗ −0.0053∗∗∗ −0.0053†

Young, No children (0.0011) (0.0011) (0.0010) (0.0010)

4. Middle-income, 299 −0.0029∗∗ −0.0030∗∗ −0.0028∗∗ −0.0028†

White (0.0014) (0.0014) (0.0014) (0.0013)

5. Middle-income, 271 −0.0072∗∗∗ −0.0067∗∗∗ −0.0055∗∗∗ −0.0057†

Mixed (0.0018) (0.0017) (0.0017) (0.0017)

6. High-income, 167 −0.0016 −0.0018 −0.0021 −0.0032†

Large properties (0.0027) (0.0027) (0.0027) (0.0020)

7. High-income, 567 −0.0025 −0.0026∗∗∗ −0.0018∗∗ −0.0019†

Small properties (0.0009) (0.0009) (0.0009) (0.0009)

8. High-income, 383 −0.0035∗∗∗ −0.0033∗∗∗ −0.0025∗∗ −0.0025†

Medium properties (0.0012) (0.0012) (0.0012) (0.0011)

† Significance test not meaningful
* Significant at 10% level of confidence
** Significant at 5% level of confidence
*** Significant at 1% level of confidence
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Table 4 Road noise parameters of the HPFs (standard errors in brackets)

Market Obs. LM PLM PLM + SS PLM + SS
segment above constrained

55 dB
threshold

1. Low-income, 27 −0.0079∗ −0.0081∗ −0.0084∗∗ −0.0091†

White (0.0050) (0.0050) (0.0048) (0.0044)

2. Low-income, 40 −0.0052 −0.0061 −0.0068∗ −0.0073†

Ethnic (0.0050) (0.0050) (0.0049) (0.0042)

3. Middle-income, 92 −0.0077∗∗ −0.0086∗∗∗ −0.0063∗∗ −0.0065†

Young, No children (0.0036) (0.0035) (0.0034) (0.0031)

4. Middle-income, 43 −0.0132∗∗∗ −0.0141∗∗∗ −0.0135∗∗∗ −0.0135†

White (0.0040) (0.0039) (0.0039) (0.0039)

5. Middle-income, 53 −0.0040 −0.0084∗∗ −0.0050 −0.0066†

Mixed (0.0050) (0.0051) (0.0050) (0.0040)

6. High-income, 15 −0.0026 −0.0146 −0.0050 −0.0136†

Large properties (0.0119) (0.119) (0.0141) (0.0096)

7. High-income, 61 0.0019 0.0020 0.0001 −0.0025†

Small properties (0.0032) (0.0033) (0.0032) (0.0019)

8. High-income, 48 −0.0085∗∗ −0.0078∗∗ −0.0085∗∗ −0.0087†

Medium properties (0.0039) (0.0039) (0.0041) (0.0039)

† Significance test not meaningful
* Significant at 10% level of confidence
** Significant at 5% level of confidence
*** Significant at 1% level of confidence

Table 5 Aircraft noise parameters of the HPFs (standard errors in brackets)

Market Obs. LM PLM PLM + SS PLM + SS
segment above constrained

55 dB
threshold

1. Low-income, 199 −0.0177∗∗∗ −0.0178∗∗∗ −0.0160∗∗∗ −0.0153†

White (0.0041) (0.0040) (0.0049) (0.0049)

2. Low-income, 0
Ethnic

3. Middle-income, 17 −0.0031 −0.0071 −0.0154 −0.0191†

Young, No children (0.0099) (0.0095) (0.0142) (0.0115)

4. Middle-income, 195 −0.0007 0.0016 0.0032 −0.0025†

White (0.0040) (0.0040) (0.0044) (0.0021)

5. Middle-income, 10 0.0170 0.0121 0.0339 −0.0096†

Mixed (0.0187) (0.0188) (0.220) (0.0085)

6. High-income, 3 0.0260 0.0280 −0.0226 −0.1585†

Large properties (0.0359) (0.0396) (0.1884) (0.1179)

7. High-income, 190 −0.0084∗∗ −0.0089∗∗ −0.0063∗ −0.0072†

Small properties (0.0040) (0.0038) (0.0046) (0.0040)

8. High-income, 30 −0.0004 −0.0053 0.0033 −0.0102†

Medium properties (0.0140) (0.0130) (0.142) (0.0080)

† Significance test not meaningful
* Significant at 10% level of confidence
** Significant at 5% level of confidence
*** Significant at 1% level of confidence
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null hypothesis that the coefficient is equal to zero.5 Since the coefficients in the final column
are constrained to be non-positive we do not report significance in this case.

Consider the road noise coefficients in Table 3. In accordance with prior expectations,
the majority of these parameter estimates are negative. Notice, however, that across all three
unconstrained specifications, those for market segments 1 and 2 remain positive. Whilst we
are happy to accept that a price premium for peaceful environments may not exist in these
two low-income market segments, it is implausible to conclude that households are actually
willing to pay more for noisier properties. Clearly, some important aspect of the local envi-
ronments in these two market segments is not captured by our specification of the HPF; a
supposition supported by the observation that our models show the poorest fit to the data in
these two cases.

Comparing across specifications, we observe that the PLM returns estimates of the road
noise coefficients that are almost indistinguishable from the LM. It appears that the non-
linearities captured by the PLM, whilst greatly improving the overall fit of the model, are
uncorrelated with road noise. In contrast, spatially smoothing the data has a more significant
impact on the road noise parameter estimates. Where the PLM + SS estimates differ markedly
from the PLM (segments, 3, 5 and 7), the coefficients are seen to reduce in absolute value. In
these cases, spatial smoothing appears to be capturing the impact of some price-depressing
spatial process, not captured by the variables in our model, that is correlated with areas of high
road noise.6 We conclude that the PLM + SS specification, in controlling for more general
spatial influences on house prices, reduces omitted variable bias and provides more accurate
estimates of the road noise parameters.

The PLM + SS model returns negative road noise coefficients for market segments 3–8
that range in value from −0.0018 to −0.0055. In other words, our preferred specification
indicates that a 1 dB increase in road traffic noise reduces the selling price of a property
by between 0.18% and 0.55%; a measure termed the noise depreciation sensitivity index
(NSDI). Encouragingly, five of these six estimates are significant at greater than a 95% level
of confidence.

Now let us consider the rail traffic noise coefficients listed in Table 4. Again the esti-
mates are generally of the expected sign except that for segment 7. Moreover, the PLM + SS
estimates are significant with greater than 90% confidence in five market segments. Given
the relatively small number of properties exposed to rail noise above the background level,
this level of significance suggests the effects are reasonably strong. Indeed, the rail noise
coefficients are generally larger in magnitude than those observed on road noise. On average
the models indicate an NSDI of 0.67%.

Comparison of the PLM and PLM + SS specifications shows that where there are large
differences in the coefficients, the parameters tend to fall in absolute value. Again we con-
clude that spatial smoothing has the effect of removing from the rail noise coefficient the
extraneous influence of omitted spatial processes that correlate with locations of high rail
noise.

The aircraft noise coefficients shown in Table 5 are somewhat more erratic than those for
either road or rail noise. Of course, given the small number of properties exposed to aircraft
noise in most segments, it is not surprising that we are unable to detect significant effects. In
the three market segments which contain the majority of properties exposed to aircraft noise,

5 Our thanks to an anonymous reviewer who indicated that a one-tailed, not two-tailed, test was appropriate
in this case.
6 One can only conjecture what these processes might be, but in addition to noise, road traffic is associated
with other negative externalities including air pollution, congestion and a lack of on-street parking, and the
community severance resulting from the barrier effect of major roads.
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the parameters have the expected sign in market segments 1 and 7, being significant at a 99%
and 90% level of confidence respectively, but not in market segment 4.

The PLM + SS specification shows clear advantages in terms of goodness of fit suggest-
ing that there are spatial processes influencing property prices that are omitted in the less
comprehensive specifications. Moreover, we have shown that accounting for these influences
by spatially smoothing the data impacts upon the noise coefficients; usually to reduce their
absolute value. Accordingly, we take the PLM + SS as our preferred specification. In the inter-
ests of brevity, we do not discuss the coefficient estimates on the numerous other regressors.
A comprehensive discussion can be found in Bateman et al. (2004).

Using a series of pairwise Wald tests, we find that we can reject, with greater than 95%
confidence, the hypothesis that the same price function characterises the data in any two
of the partitions identified by the cluster analysis. We take this as evidence to support our
contention that the cluster analysis has identified separate market segments (as per Allen
et al. 1995).

For each household, we estimate the implicit price of each type of noise using Eq. 7.
Under the reasonable assumption that noise is considered a bad, the second stage estima-
tion requires that these implicit prices are negative. The existence of a scattering of positive
(though insignificant) noise coefficient estimates, therefore, is problematic. As such, we also
estimate implicit prices using the constrained coefficient estimates listed in the final columns
of Tables 3–5.

It is worth making a few preliminary comments on the research findings at this juncture.
First, Tables 3–5 tell a fairly consistent story. If we ignore insignificant results, our data
suggest that the implicit price of aircraft noise tends to be relatively larger than that for rail
noise which in turn is relatively larger than that for road noise. Of course, as previously
discussed, implicit prices are determined by the complex interaction of supply and demand
in the market. Accordingly, whilst we could speculate that this observed pattern is a result of
a relatively greater demand for environments free from rail noise than from road noise and
a greater demand still for environments free from aircraft noise, such a conclusion would
only be justified if the supply conditions of those different environments were identical.
This leads on to a second comment. Notice that across the various market segments, there
is considerable variation in the coefficients (and, as such, implicit prices) for each partic-
ular type of noise. Again these differences might be explained as the outcome of differing
supply and demand conditions in the various segments. Of course, this fact introduces a
problem for policy-makers; implicit prices, by their very nature, are market specific and are
not quantities that can be transferred across markets. It is this observation that motivates our
desire to move beyond implicit prices and carry out a second-stage hedonic analysis in order
to recover underlying preference relationships. In particular, transferring welfare estimates
derived from preference relationships across markets is theoretically defensible, transferring
implicit prices across markets is not.

6 The econometric model: second stage

In the second stage we pool the data from all market segments and seek to estimate a demand
system for peace and quiet. Notice that we invert the measure of noise so as to frame the
analysis in terms of the good ‘peace and quiet’. Moreover, the demand for peace and quiet
is assumed to be censored from above at the background urban noise level of 55 dB. We
set the scale for our peace and quiet measure such that 55 dB is zero and each extra dB of
noise exposure is one less dB of peace and quiet. In addition, given the concentration of
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aircraft noise in just a few market segments, we restrict our investigation to the estimation of
demand equations for the avoidance of road and rail traffic noise where we observe variation
in implicit prices across the range of market segments.

For the purposes of a demand analysis we would prefer our implicit prices to be expressed
as annual rents. According to theory, if one assumes that rental and purchase markets operate
perfectly, then a property’s purchase price will be equal to the discounted sum of the stream
of future annual rents realisable from that property over its expected lifetime. We assume the
same relationship holds between the implicit prices and implicit rents of property character-
istics. It is mathematically convenient to suppose that the expected lifetime of a property is
infinite such that for some discount rate, τ , implicit prices for noise are converted to implicit
rents according to;

rzk = −τ · pzk (8)

where the negation inverts rents for noise into rents for peace and quiet.
Following Palmquist and Isangkura (1999), we invoke a two-stage budgeting hypothesis

such that the relevant argument in the demand relationship is not household income, but the
household’s total expenditure in purchasing a property.

Of course, non-linearity in the HPF implies non-constant implicit prices such that this
total expenditure does not trace out the usual linear budget constraint in property attribute
space. Non-linearity of the budget constraint is a considerable problem for the estimation
of Marshallian demand functions. First, since prices are not parametric to the consumer’s
problem, households’ choice of residential location implies a simultaneous choice of both the
price and quantity of property attributes. Accordingly, our econometric model must account
for the endogeneity of prices. Even more troublesome is the fact that when implicit prices are
not constant a household’s choice of attribute levels will depend not only on marginal prices
but on the parameters of the entire HPF. Under these circumstances, even if one makes the
standard assumptions concerning preferences, Marshallian demand functions do not neces-
sarily manifest themselves as downward sloping curves in price-quantity space (Palmquist
1988).

One procedure for dealing with this problem is that proposed by Murray (1982) and
Palmquist (1988). Here a new variable is calculated for each household indicating the ‘vir-
tual’ expenditure that would be necessary to purchase their chosen property if prices were
in fact constant at the implicit prices characterising their chosen bundle. We include virtual
rather than actual expenditure in the specification of the demand system and, as a result, the
functions we estimate are pseudo-Marshallian demand functions. This estimation strategy
has been applied previously in the context of hedonic models by Bajic (1993) and Boyle et
al. (1999) amongst others. We convert virtual expenditure, ỹ, into an annual equivalent, m̃,
according to;

m̃ = τ · ỹ (9)

In theory, the implicit prices of all property attributes should enter the demand relation-
ship for peace and quiet. In practice this would require the inclusion of an impractically large
number of covariates. Consequently, we ignore cross-price effects for all attributes other
than those relating to the noise environment. A similar assumption is made by Palmquist and
Isangkura (1999).

Our econometric analysis seeks to estimate two separate demand equations;

q∗
1 = q̃1 (r1, r2, m̃, s)

q∗
2 = q̃2 (r1, r2, m̃, s)

(10)
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where equations and variables pertaining to road noise are subscripted 1 and those pertaining
to rail noise are subscripted 2. Furthermore, q∗

k is the quantity of peace and quiet; q̃k (·) is the
pseudo-Marshallian demand relationship, rk are the annualised implicit prices for peace and
quiet, m̃ is virtual annual expenditure on property services and s is a vector of socioeconomic
demand shifters.

To maintain simplicity we estimate (10) as the linear demand system;

q∗
ki = βk

0 + βk
m ln (m̃) + βk

1r1i + βk
2r2i + siγ k + uki

(k = 1, 2; i = 1, . . . , N ) (11)

where βk
0 is the demand curve intercept, βk

m is the parameter on virtual expenditure, βk
1 and

βk
2 , are respectively, the parameters on the prices of avoiding road and rail noise, whilst γ k

is the vector of parameters on the socioeconomic demand shifters and uki is an error term.
While the linear specification contravenes restrictions implied by economic theory,7 our

choice of functional form is driven by pragmatic considerations. In particular, we need to
contend with numerous econometric problems that are relatively easier to handle in a linear
model. For example, numerous households choose properties at the corner solution imposed
by the existence of an urban background level of noise. Accordingly our dependent variable
is censored from above taking the form;

qki =
{

q∗
ki i f q∗

ki < 0
0 otherwise

(k = 1, 2; i = 1, 2, . . . , N ) (12)

One standard way of analysing censored data of this type is to apply the Tobit model. Unfor-
tunately, we have an additional problem with which we have to contend that may compromise
the Tobit model; both implicit prices (rk) and the virtual expenditure (m̃) that is calculated
from them, are endogenous in the demand relationship.

The most general technique for handling endogenous variables is the method of instrumen-
tal variables (IV). This method requires the identification of a set of instrumental variables
each of which must be both correlated with the endogenous variables as well as independent
of those elements of the joint decision process (i.e. the simultaneous choice of quantity and
price) that are not captured by the model. Here we assume that these uncaptured elements
reflect specific characteristics of the household and their attitude to noise. As such we follow
the suggestion of Cheshire and Sheppard (1998) and select as instrumental variables the
values of rk j and m̃ j chosen by other nearby households. We define “nearby” as proximity
in a multidimensional space defined by geographic location, socioeconomic characteristics
(i.e. neighbourhood factors) and property characteristics (i.e. floor and garden area). That
is to say, we select the values chosen by households living in similar properties in similar
neighbourhoods that are close by. Notice that we do not allow for households living in the
exact same neighbourhood; that is, in the same (ED).8

7 Several econometric specifications have been developed that seek to explicitly impose the restrictions implied
by economic theory. Indeed Cheshire and Sheppard (1998) and Palmquist and Isangkura (1999) employ one
such specification, the almost ideal demand system, in their hedonic pricing studies.
8 An anonymous reviewer has raised the issue of whether the values of nearby households qualify as valid
IVs. In particular, they note that in a world of spatial correlation, individuals with similar (and unobserved)
characteristics may group themselves in the same area. In that case, our IVs may exhibit correlation with the
error term in the same way as the original variables. In our defence, the households we chose as being “nearby”
were not allowed to live in the same ED. Since road and rail noise in the urban environment are highly localised
phenomena, it is unlikely that the noise environment in one ED will reflect that in a neighbouring or nearby
ED. As such, if the omitted characteristics that are the source of our problem, are those relating to attitudes to
the noise environment, then we have no reason to believe that these characteristics will be correlated across
nearby EDs.
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Amemiya (1979) describes an IV procedure for censored data that generalises the Tobit
model and returns consistent estimates of the parameters of the linear demand system. The
procedure is known as Amemiya Generalised Least Squares (AGLS). Newey (1987) shows
that AGLS returns parameter estimates that are more efficient than other possible estimators.

7 Estimation of demand functions for peace and quiet

In estimating the demand relationships, there are a number of data issues with which we have
had to contend. As noted previously, the PLM+SS specification of the HPF indicates that for
a handful of segments, the price of peace and quiet is negative. Clearly, negative prices defy
both theory and common sense; are we to believe that households are prepared to pay more
for properties in noisier locations? One response to this problem is to treat the negative prices
from the PLM + SS model as resulting from sampling error where the ‘true’ implicit prices
for peace and quiet are in the region of zero. The solution then, is to set aberrant prices to
a value of zero in the regression analysis. A second response is to impose negativity on the
first stage regressions using the constrained PLM + SS specification discussed previously. In
what follows we compare the outcomes of these two approaches.

Second, we must decide upon a discount rate, τ with which to annualise prices and expen-
diture. To this end we examined numerous Birmingham estate agent and letting agent listings
in order to find pairs of similar properties being offered for rent and sale, respectively. Com-
parison of the sale price and rental price of matched properties provides an estimate of the
required discount rate. This data from 2003 suggests a discount rate that equates to a value
halfway between the mortgage rate and the base rate. Applying this simple rule of thumb to
the Birmingham data from 1997 provides a discount rate of 6.78%.9

Finally, our data lacks information on the specific characteristics of the households making
the property purchases. Accordingly we use the factor scores describing the socioeconomic
characteristics of all households in the property’s local neighbourhood as a proxy for each
household’s actual characteristics.

Tables 6 and 7 record estimates of the parameters of the pseudo-Marshallian demand
functions for peace and quiet from road and rail traffic, respectively. The functions have been
estimated using implicit prices calculated from both the unconstrained PLM + SS specifica-
tion (with negative prices set to zero) and the constrained PLM + SS specification.10 Also,
for each set of price estimates, the demand function parameters have been estimated using
both the Tobit model and the AGLS model which corrects for the endogeneity of prices.

Consider first the issue of price endogeneity. If endogeneity is not a problem with this
data then, assuming we have defined valid instruments, we would expect the Tobit and AGLS
models to return very similar parameter estimates. Observe from Tables 6 and 7, however, that
for both sets of price data, the parameter estimates from these two models differ significantly
in magnitude. We calculate a test statistic suggested by Smith and Blundell (1986) to assess

9 In employing this rule of thumb, we must assume a certain degree of myopia on behalf of house buyers.
That is, households are assumed to calculate d based purely on current interest rates and not on the expected
future values of these rates as would be more theoretically correct. In reality, this assumption is probably not
too far-fetched.
10 In estimating standard errors for the parameters of the second stage regressions we do not correct for the
fact that the implicit prices are themselves estimated with some level of imprecision. Accordingly, the p-values
reported in Tables 6 and 7 overstate the significance of the parameter estimates and the width of the confidence
intervals for the welfare values that follow in Tables 8 and 9 will be biased downwards. Notice, however, that
not accounting for this added imprecision does not bias either the parameter estimates or the mean welfare
values derived from them.

123



Beyond implicit prices 227

Table 6 Parameters of the pseudo demand functions for road noise (p-values in brackets)

PLM + SS PLM + SS constrained

Tobit AGLS Tobit AGLS

Road noise price −0.179 (0.000) −0.419 (0.000) −0.192 (0.000) −0.420 (0.000)

Rail noise price −0.007 (0.492) 0.104 (0.110) −0.024 (0.008) −0.012 (0.862)

Log pseudo expenditure 3.318 (0.000) 7.649 (0.006) 4.982 (0.000) 11.485 (0.000)

Ethnicity factor 0.611 (0.001) 1.438 (0.000) 0.820 (0.000) 1.652 (0.000)

Age factor −0.131 (0.538) −1.506 (0.000) −0.076 (0.718) −0.910 (0.057)

Family factor 1.272 (0.000) 1.084 (0.000) 1.273 (0.000) 1.160 (0.000)

Constant −16.709 (0.000) −52.735 (0.011) −19.443 (0.000) −80.644 (0.011)

Smith–Blundell test
of exogeneity: 12.357 (0.000) 9.481 (0.000)

Uncensored obs: 2,723
Censored obs: 7,918

Table 7 Parameters of the pseudo demand functions for road noise (p-values in brackets)

PLM + SS PLM + SS constrained

Tobit AGLS Tobit AGLS

Rail noise price −0.043 (0.047) −0.446 (0.001) −0.036 (0.042) −0.269 (0.039)

Road noise price −0.224 (0.000) −0.399 (0.041) −0.214 (0.001) −0.385 (0.050)

Log pseudo expenditure 8.139 (0.000) 20.297 (0.000) 9.020 (0.000) 18.005 (0.001)

Ethnicity factor 0.719 (0.053) 0.729 (0.126) 0.941 (0.013) 1.186 (0.031)

Age factor 1.623 (0.000) 2.978 (0.000) 1.652 (0.000) 2.553 (0.005)

Family factor 0.663 (0.094) 0.535 (0.276) 0.682 (0.085) 0.167 (0.733)

Constant −36.410 (0.000) −124.726 (0.001) −43.515 (0.000) −108.878 (0.008)

Smith–Blundell test
of exogeneity: 3.877 (0.009) 1.934 (0.122)

Uncensored obs: 379
Censored obs: 10,262

Table 8 Welfare estimates for changes in road noise exposure at means of covariate data (95% confidence
interval range in brackets)

Noise change Welfare change (£ per annum in 1997 prices)

High Low PLM + SS PLM + SS constrained

Tobit AGLS Tobit AGLS

56 55 61.19 31.49 57.77 32.32
(49.34–81.11) (24.84–52.52) (47.74–76.26) (26.58–46.40)

61 60 89.19 43.42 83.75 44.22
(71.09–120.00) (33.14–75.97) (68.20–112.45) (35.31–66.69)

66 65 117.18 55.35 109.72 56.12
(92.86–159.61) (41.49–99.57) (88.62–148.69) (44.03–87.04)

71 70 145.17 67.28 135.69 68.02
(114.58–198.96) (49.83–123.57) (108.97–184.91) (52.77–107.31)

76 75 173.17 79.21 161.67 79.93
(136.55–238.47) (58.17–147.58) (129.27–221.52) (61.52–127.57)

81 80 201.16 91.15 187.64 91.83
(158.37–277.98) (66.52–171.58) (149.65–257.78) (70.32–147.84)
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Table 9 Welfare estimates for changes in rail noise exposure at means of covariate data (95% confidence
interval range in brackets)

Noise change Welfare change (£ per annum in 1997 prices)

High Low PLM + SS PLM + SS constrained

Tobit AGLS Tobit AGLS

56 55 645.27 83.61 789.02 127.11
(317.52–2,435) (43.21–461.80) (419.94–3,231) (77.61–469.36)

61 60 761.72 94.82 928.99 145.67
(372.86–2,866) (49.30–519.77) (490.16–3,831) (86.74–557.37)

66 65 878.16 106.02 1,068.97 164.24
(426.51–3,309) (55.39–580.05) (560.84–4,431) (95.72–645.39)

71 70 994.61 117.23 1,208.94 182.80
(480.16–3,752) (61.47–654.04) (632.99–5,032) (104.88–733.41)

76 75 1,134.35 128.44 1,348.91 201.36
(533.81–4,196) (67.47–728.03) (705.16–5,632) (114.16–821.42)

81 80 1,227.50 139.65 1,488.88 219.93
(588.40–4,639) (72.72–802.03) (777.18–6,232) (123.44–909.44)

whether accounting for the endogeneity of prices has a statistically significant impact on the
parameter estimates. The test statistic is highly significant for both sets of data in the case of
the road noise demand functions. The statistic is only significant for the unconstrained price
data in the case of the rail noise demand functions. Taken as a whole, however, it seems that
we are well-advised to control for endogeneity in our estimation of the demand functions.

In contrast, when comparing the AGLS estimates for the unconstrained and constrained
price data we see only relatively modest differences in the parameters. A standard Hausman
test of differences in parameters confirms that differences are not statistically significant for
either the road or rail noise demand functions. Accordingly we focus our discussion on the
parameter estimates from the AGLS model using the unconstrained price data.

In accordance with expectations, the own-price terms in both pseudo-Marshallian demand
equations are negative and highly significant. Interestingly, the two own-price coefficients
are relatively close in value suggesting the slopes of the two demand curves are relatively
similar.

We expect the cross-price terms to be negative, reflecting the complementarity relation-
ship that exists between peace and quiet from different sources. That is to say, to attain a quiet
environment, the household must purchase peace and quiet from different sources of noise
pollution in roughly similar quantities. Increases in the price of peace and quiet from one
particular source will not only reduce demand for peace and quiet from that source but will
also tend to reduce demand for peace and quiet from other sources. The regression results,
provide weak evidence supporting this hypothesis. In the rail demand equation the parameter
on the road noise price is negative and significant at the 95% level of confidence. However,
contrary to expectations, the parameter for rail noise price in the road demand equation is
positive though not statistically significant.

Demand for peace and quiet is greater for households allocating greater virtual expendi-
ture to the purchase of their property. As Blomquist (1989) observes, it does not necessarily
follow that demand is increasing in actual expenditure though in numerous special cases this
will also be true. In contrast to the similarity in own-price parameter estimates, the parameter
estimate for expenditure is a great deal larger in the rail traffic noise equation.
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We are cautious in interpreting the parameters of the socioeconomic variables since these
are only proxies for each household’s actual characteristics. Reassuringly, the parameter esti-
mates on the family composition factor are of the same sign and almost identical magnitude.
These indicate that demand for noise avoidance is greater amongst households with young
families. The ethnicity factor coefficient also takes the same sign in both equations indicat-
ing that households from the ethnic minorities demand relatively greater levels of peace and
quiet, all else equal. For rail traffic noise, however, the parameter estimate is statistically
insignificant. The coefficient estimates for the adult age composition are the least easy to
interpret. The estimates suggest that older households demand relatively more peace and
quiet from rail traffic noise but, conversely, relatively less peace and quiet from road traffic
noise. We have no particular theory to support these conflicting results.

Finally, we adopt the framework suggested by Weesie (1999) in order to test whether
the two demand relationships can be considered as separate estimates of the same general
demand function for peace and quiet independent of source. We find that we can reject this
hypothesis with a high level of confidence; preferences for peace and quiet appear to differ
according to the source of the noise.

8 Welfare estimates

Estimates of the benefits of an external change in the provision of peace and quiet can be
calculated as areas under the pseudo-Marshallian demand curves. For road and rail traffic,
respectively, Tables 8 and 9 report welfare values for selected 1 dB changes in noise levels
calculated at the mean values of the covariate data for each of the models in Tables 6 and 7.
The welfare estimates are values per annum reported in 1997 prices.

Notice that in all cases, the preferred AGLS model returns more conservative estimates
of the welfare changes. Clearly, our observation that accounting for price endogeneity has
significant impacts on the estimated parameters of the pseudo-Marshallian demand functions
carries over to welfare estimates based on those functions. In contrast, the welfare estimates
derived from the constrained and unconstrained price data are remarkably similar. Indeed, in
all cases it is impossible to reject the hypothesis that these are estimates of the same value.
Accordingly, we again focus our discussion on the welfare values derived from AGLS model
applied to the unconstrained data.

The mean values for road noise range from £31.49 per annum for a 1 dB reduction from
a 56 dB baseline to £91.15 per annum for the same change from an 81 dB baseline. The
equivalent values for rail noise are higher, ranging from £83.61 to £139.65 per annum. One
possible explanation for this observation is that the common unit used to measure noise from
these two sources (dBLEQ) conceals important differences in the characteristics of road and
rail noise. For example, in summarising a location’s noise exposure as the continuous noise
level with equivalent energy content, one might conjecture that the dBLEQ measure provides
a relatively poor scale by which to approximate the differences in disbenefit resulting from
the extreme spikes of rail noise as compared to the relatively more constant pattern of road
noise.

Furthermore, Tables 8 and 9 report 95% confidence intervals for each of the reported
welfare estimates. These are calculated using a non-parametric bootstrap procedure. It is
apparent that the 95% confidence intervals for the rail welfare estimates are considerably
wider than those for the road welfare estimates, reflecting the substantially fewer observa-
tions of properties exposed to rail noise above the urban background level upon which those
estimates are based.
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9 Concluding remarks

While several previous studies have attempted to identify implicit prices for peace and quiet,
those estimates reflect only the specific conditions of supply and demand that exist in the
particular property markets studied. Such estimates provide no basis for calculating transfer-
able welfare values. In this research, we have attempted to go one step further and estimate
demand functions for peace and quiet. Since these functions identify households’ underly-
ing preferences, they might be preferred as objects for transferring benefits across locations.
As far as the authors are aware, the values presented in Tables 8 and 9 are the first esti-
mates of welfare values for peace and quiet derived from hedonic property market data in a
theoretically consistent manner.

In proffering these values to the policy-making community, however, we draw attention
to a number of caveats. First, our data relate only to households that purchase properties.
Accordingly, the demand relationships reflect only the preferences of households participat-
ing in the property-purchasing as opposed to property-rental market.

Second, there is a degree of circularity in the estimation strategy of introducing price
variation through the identification of market segments. In particular, we would like our data
to provide evidence of how households with similar characteristics choose when faced by
different price functions in separate markets. Unfortunately, the market segments are defined
in part by the socioeconomic characteristics of households such that they comprise rela-
tively distinct socioeconomic groupings. Accordingly, the degree of overlap in household
types across market segments may perhaps be rather less than might be hoped. Rather better
would be for the first stage analysis to be applied in a second urban area characterised by
a similar socioeconomic mix of inhabitants as that in Birmingham. The combination of the
output from that second study with the Birmingham study would bring together data from
similar households choosing in distinct markets and would provide a far stronger basis for
identification of the demand relationship.

Finally a critical question for welfare analysis is the extent to which pseudo-Marshallian
demand curves approximate compensated demand curves. This crucially depends on the
size of income effects. If there are no income effects then the relationship between prices
and quantities is not influenced by adjustments to expenditure. In this case, the pseudo-
Marshallian demand curve will exactly replicate the compensated demand curve. As income
effects become more pronounced, the pseudo demand curve will begin to differ from the
compensated demand curve in ways that mirror the divergence between the ordinary demand
curve and the compensated demand curve in a world of constant marginal prices. Theoreti-
cal work by Edlefsen (1981) and Blomquist (1989) has sought to describe the relationships
that exist between the pseudo and ordinary demand functions when marginal prices are not
constant. Unfortunately, there appears to be no theoretical research comparing the pseudo
and compensated demand curves in a world of non-constant marginal prices to parallel that
carried out by Willig (1976), Randall and Stoll (1980) and Hanemann (1991) in comparing
the ordinary and compensated demand functions in a world of constant marginal prices.
Accordingly, the authors are not in a position to say how closely the welfare estimates pre-
sented in Table 4 parallel the theoretically consistent values that would be derived from a
compensated demand curve.

That said, we have taken care in our application to address all the major theoretical and
empirical difficulties that afflict estimation of demand relationships from property market
data. Indeed, in tackling these various problems our research brings together a host of fron-
tier techniques, some of which have not previously been applied in economics research.
Moreover, the results of our analysis are statistically significant and conform with theoretical
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expectations. Finally, our welfare estimates are of a magnitude that might be regarded as
“reasonable”. We believe that these features of our study should be taken as an indication of
the validity and robustness of the procedures used in this analysis.
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